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ABSTRACTS /94

"Several problems in the aerodynamics of Interkosmos and Kosmos
series satellites," B.M. Kovtunenko, A.I. Vasil'yeva, V.F. Kameko,
Yu.T. Reznichenko, and E.P. Yaskevich, Kosmicheskiye i ssledovaniya
na Ukraine [Space research in the Ukraine], No. 2, "Naukova dumka,"
Kiev, 1973, pp. 1 - 15-

A method for determining aerodynamic characteristics of a
satellite in sun-synchronous orbit is presented, with allowance
for the instantaneous position and orientation in orbit.

Based on the deceleration parametersoof the AES Interkosmos-1,
Interkosmos-4, Kosmos-166, and Kosmos-230, using local values of
the coefficient Cx at the orbital perigee, the upper-atmospheric
densities were determined in the altitude range h = 200 - 320 km
corresponding to the mean level of solar activity. A comparison
is given of the resulting densities with the data from the CIRA-65
model. The influence of the semiannual effect in the fluctuations
of the upper-atmospheric density appeared in the experimental data.

Bibliography: 13 entries. Figures: 8. Tables: 3.

S'Selectionofextremal trajectories for the launch of AES from orbit,"
N.F. Gerasyuta, E.P. Kompaniyets, and A.A. Krasovskiy, Kosmicheskiye
issledovaniya na Ukraine, No. 2, "Naukova dumka," Kiev, 1973, pp.
16-- 33

A method for selecting control programs for a space object in
the orbital departure section of AES providing, for specified fuel
reserves onboard the object, the extremal value of some functional
is proposed; the functional may be taken as the parameters of the
endpoint, of the powered section or the parameters of the initial
orbit, or any other functional that depends on these parameters.

The analysis was conducted for the case of the Newtonian
representation of the Earth gravity field potential with certain
simplifications for the powered trajectory section.

Bibliography: 8 entries.

!Analysis.adf problems .of spacecraft navigation and control," V.V. Gor-
buntsov, V.G. Komarov, V.F. Lager t, Q.L. Madatov, and A.T. Onishchenko,
Kosmicheskiye issledovantya na Ukraine, No. 2, "Naukova dumka," Kiev,
1973, PP. 34 - 48.

A method of optimizing programming functions is described,
based on the criterion of the maximum response, which consists of

iv



constructing the absolutely-minimum Lyapunov-Bellman function
as the envelope of a Cn - 1)-parametric family of partial integrals
traversing the point ( 0o, to) of the phase space X = {xn).

Problems of optimizing the control. r cases of spacecraft
motion along elliptical orbits and when entering a planetary
atmosphere are examined, using the Pontryagin principle of the
maximum. The variational boundary value problem is solved with
optimization of the functional within a certain interval of
motion.

Bibliography: 10 entries. Figures: 2.

kUsedf, the finite-rotation vector in onboard digital computers
for determining spacecraft orientation," A.P. Panov, Kosmicheskiye
issledovaniya na Ukraine, No. 2, "Naukova dumka," Kiev, 1973,
pp- 49 - 56

The possibility of using in onboard digital computers the
finite-rotation vector for determining the orientation of space-
craft (SC) based on readings of integrating rate transducers hard-
mounted on the SC is examined.

It is shown that determining the SC orientation by using the
finite-rotation vector is preferable from the standpoint of attaining
the smallest volume of computations in the onboard digital computer,
than the use of quaternions in the form of Rodrig-Hamilton parameters,
since the gain in computation volume is nearly 30%.

Recursion algorithms of the first and second order of precision
are presented for computation in the digital onboard- computer of
the projections of the finite-rotation vector, and error estimates
of these algorithms are given.

Bibliography: 9 entries.

Operating economy of spacecraft stabilization systems," N.F. Geras.Lwi
yuta, Yu.D. Sheptun, and S.V. Yaroshevich, Kosmicheskiye issledovania
na Ukraine, No. 2, "Naukova dumka," Kiev, 1973, pp. 57 - 6 .

The possibility of increasing the operating economy of a
relay system of orientation for a spacecraft moving outside the
atmosphere with or without the presence of a constant perturbing
moment is examined, Oscillations of the system are considered,
with reference to the possible nonequality of the impulses of con-
trol moments produced per unit engagements. of the actuators (Aw 4 0).
For the case when a perturbing moment is acting and Aw , 0, both
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simple and complex natural oscillations can be established. The
appropriate selection of Aw minimizes the amount of energy expended.

Bibliography: 3 entries. Figures: 10..

"Problems of oscillations and the stability of motion of multi- /95
dimensional elastic and elastofluid controlled objects," A.I. Kukh-
tenko, V.V. Udilov, and B.A. Gudymenko, Kosmicheskiye issledovaniya
na Ukraine, No. 2, "Naukova dumka," Kiev, 1973, pp. 70 - 87

The possibilities of using methods from the theory of the
representation of groups and the method of decomposition in
solving problems of the control of the motion of elastoliquidw
objects are discussed.

As an example illustrating the procedure of applying the theory
of the representations of groups, the problem of the natural oscil-
lations of an elastic orbital space station is examined. The
forms of natural oscillations are presented by symmetry types; the
multiplicities of natural frequencies are found and a decomposition
(subdivision of the system into a series of subsystems) of a
mathematical model of the control object is made, on the basis of
symmetry properties.

Bibliography: 20 entries. Figures: 3.

"Analysis of natural oscillations of a spacecraft," N.F. Gerasyuta,
Yu.D. Sheptun, and S.V. Yaroshevich, Kosmicheskiye issledovania na
Ukraine, No. 2, "Naukova dumka," Kiev, 1973, PP. 88 -106.

Oscillations of an aerodynamically unstable spacecraft with a
relay jet orientation system, moving at the altitude h = 100 - 120
km, and acted on by a constant perturbing moment, are examined.
The effect of the difference in the control impulses and atmos-
pheric density on the nature of motion is investigated. The
problem is solved by methods of point transformations and the
theory of bifurcations. It is shown that with increase in atmos-
pheric density, the multiplicity of complex oscillations decreases,
and the sequence of the onset of bifurcation moments changes. The
stability of simple and complex oscillations is proven; a comparison
is made of the amounts of energy expended in orientation. It is
shown that the energy consumption depends essentially on the
difference of the impulses of the control instants.

Bibliography: 5 entries. Figures: 10,. Tables: 2.
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"Integration of Euler's kinematic equations," A.I. Tkachenko,
Koamicheskiye issledovaniya na Ukraine, No. 2, "Naukova dumka,"
Kiev, 1973, pp. 107- 114.

The problem of computing the Euler angles characterizing the
orientation of a spacecraft in space is discussed. First- and
second-order algorithms are suggested for integrating the
Euler kinematic equations.

"An algorithm for computing the trajectory of the injection of a
space object into orbit," A.A. Krasovskiy and L.T. Gripp, Kosmiches-
kiye issledovaniya na Ukraine, No. 2, "Naukova dumka," Kiev, 1973,
pp. 115 - 127.

A universal algorithm for the numerical integration of the
equations of motion of a space object over the injection trajectory
section is examined.

The algorithm is based on the method of successive approxima-
tions and the approximation of the right sides of the differential
equations of motion by interpolational power polynomials. The
trajectory elements were computed by using a reference trajectory
specified in a simple analytic form.

Bibliography: 5 entries. Figures: 3.

"Analytic-numerical method of computing attitude changes of similar
AES," A.A. Krasovskiy, Ye.I. Bushuyev, E.P. Kompaniyets, and A.A.
Vasil'yeva, Kosmicheskiye issledovaniya na Ukraine, No. 2, "Naukova
dumka," Kiev, 1973, pp. 128 - 140.

The motion of near Earth satellites for which the principal
perturbing factors are the noncentrality of the Earth gravity
field and the atmospheric drag is considered.

An analytic-numerical method of computing the orbital attitude
changes is proposed, based on the equations of motion in osculating
elements. Perturbations of the elements during a single revolution
of the AES are determined by finite formulas, with reference to
the second, third and fourth zonal harmonics of the expansion of
the geopotential, and also with reference to the atmospheric
drag, described by a dynamic model.

From preliminary estimates, the errors of the proposed method
caused by the analytic representation of the perturbations of the
orbital elements do not exceed 5%.

Bibliography: 8 entries. Figures: 1.
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SEVERAL PROBLEMS IN THE AERODYNAMICS
OF INTERKOSMOS .AND KOSMOS SERIES SATELLITES

B.M. Kovtunenko, A.I. Vasil'yeva, V.F. Kameko,
Yu.T. Reznichenko, and E.P. Yaskevich

Analysis of the parameters of sun-Isynchronized AES [arti- /3*
ficial earth satellites] is of definite practical interest for
aerodynamicists, since for this type of satellite the angle of
attack is a slow-varying parameter and can be determined simply.
As a consequence, full-scale values of aerodynamic characteristics
and the density of the upper atmosphere can be determined more
exactly. These AES include the satellites considered in the
present article, Interkosmos-l, Interkosmos-4, Kosmos-166, and
Kosmos-230, launched into orbit with the parameters indicated
in Table 1. These satellites have identical geometrical shape
CFig. 1), formed by a prismatic body with spherical bases, eight
solar battery panels mounted perpendicularly to the longitudinal
axis of the body, and scientific equipment bays carried on a
special platform.

The main factor determining the ballistic lifetime and charac-
teristics of the system of orientation of satellites with orbital
altitude h < 600 km, is the aerodynamic action of the incident
flow of rarified upper-atmospheric gas. The purpose of this
article is the analysis of calculated and full-scale experimental
data on the aerodynamics of Interkosmos satellites.

The aerodynamic characteristics of a body, dimensionless
coefficients of surface forces, are calculated by integration
over the surface of the body A of the forces acting at an elementary
surface area, i.e., the overall forces and moment will be

P = PandA + PdA + S PbdA;
A A A

, = Pa [;I dA + P, l[ dA + S P Ir] dA,
4 A A

where Pn, P,, and Fb are the normal, tangential, and binormal
projections of the lift acting over the elementary area dA; r
is the radius-vector of the elementary area.

In the case of the freely molecular streamlining regime when
the Knudsen number Ks > 1 [1], the forces acting at dA do not

*Numbers in the margin indicate pagination in the foreign text.



depend on flow past the remaining surface and finding of the
integrals is much simplified.

In calculating nonconvex bodies, of the type of Interkosmos
series satellites, it is necessary to introduce a correction for
the interference caused by the shading of some satellite
structural members by others and for the repeated collisions of
flow molecules with the surface.

The exact calculation of the aerodynamic characteristics of
satellites is very difficult, since thus far full-scale parameters
of the interaction of the incident flow of rarified gas with the
surface are unknown. At the present time there are several inter-
action schemes [2, 3, 41 obtained on the basis of theoretical and
laboratory investigations. One of the most common is the diffuse-
mirror scheme [2], which was adapted in the calculations of the
aerodynamic characteristics of Interkosmos satellites.

Limited full-scale experimental data [5, 61 indicate i /4
generally in favor of the nearly diffuse character of the reflec-
tion of molecules from the satellite surface and the values of
the coefficient of accommodation aac close to unity. Because of
this, and with reference to the actual properties of satellite
surfaces, in the calculations the values an = oT = aac = 1 were
adopted, where an and rT are the coefficients of exchange of
normal and tangential momentum.

TABLE 1.

Date Satellite Apogee, Perigee, ca, W 0o

km km o a)

H OH *H .

10/14/1969 Interkosmos-1 640 260 48.4 93.3
10/14/1970 Interkosmos-4 668 263 48.5 93.6
16/ 7/1967 Kosmos-166 578 283 48.4 92.9
5/ 8/1968 Kosmos-230 563 288 48.4 92.8
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For the adopted scheme of interaction, the projections of
the lift Pn, PT, and Pb are expressed by the following formulas [7]:

+ T e- ' ' i + [-+ sin at II + erf (s sin acl)l

P, = cos-a' e-~ssin"i + sin a, cos a [1 + er (s sin a)! P ;

Pb = 0 Cthe surface is assumed isotroplc).

Here ai is the local angle of attack of the area; s = v/vt
is the ratio of the velocity of the incident flow to the most
probable thermal velocity of the molecules in the flow; T. is
the temperature of the gas in the incident flow; Tw is the
temperature of the surface of the body; and p is the density
of the gas.

The effect of the nonsteady-state
nature of flow past a satellite caused
by oscillations relative to the center
of mass with an angular velocity w was
not taken into account in the calcula-
tions, since the additional forces and
moments induced thereby are of the order
of %wR/V'compared to the steady charac-
teristics [7] and are negligibly small
in our case.

The calculated values of the drag
Fig. 1. General view coefficient of the satellites Cx given
of the satellites with respect to the area A = 4.27 m2 ,
Interkosmos-1, Inter- the coefficient of the aerodynamic
kosmos-4, Kosmos-166, moment relative to the center of mass
and Kosmos-230. mz given with respect to the same area

and to the length L = 1.8 m, and the
coordinates of the center of pressure

relative to the center mass id calculated with allowance
for the effect of shading as a function of the satellite angle of
attack a are presented in Fig. 2. Here it was assumed that
a is the angle between the direction of the longitudinal axis
of the satellite Ox facing the Sun and the Vector of satellite
velocity v0 relative to the incident flow; the axis Oz relative
to which the coefficient mz was calculated is always ,perpendicular
to the plane v00x. Since the angle c does not determine uniquely
the position of the satellite in the flow, the angle € of rotation /5
relative to the plane of the angle of attack was also introduced
CFig. 2 .

3



To simulate the motion of a satellite in orbit in order to
make an analysis of the aerodynamic forces and moments acting
during flight, it is necessary to determine the valuesof the
angle of attack a as a function of time. To do this, let us
introduce the following rectangular right-handed coordinate
systems:

-- the absolute system Axayaza; the axis Aza coincides with
the Earth axis and the direction to the North Star; the
axis Axa is directed toward the point of the Vernal
Equinox y;

-- the terrestrial system Exeyeze; the axis Eze is oriented
from the center of the Earth along its axis of rotation
toward the North Star; the axis Exe is oriented toward
the point of intersection of the Greenwich Meridian
with the equator; and

-- the orbital system CxOYOz 0 ; the axis CYO is oriented from
the center of the Earth to the satellite center of mass;
the axis CXO lies in the orbital plane and is oriented in
the direction of motion.

The instantaneous
values of the angle of

, 2  rattack a are determined
O, by finding the projec-

2O Y -e tions of the vector 70
/-5 and the vector of

S: direction toward the
Sun s in the system

0,2.0CxOYOz 0. The expressions
-) for the projections of

0A the vector v 0 in the
j orbital system of

o-o coordinates are assumed
- ~cr z to be analogous to those

obtained in the study
.[81, according to which

a0 -90 2 to ic <de the vector v0 is defined
by the ellipticity of
the orbit and by the

Fig. 2. Calculated values of the coef- wind in the upper .
ficient of aerodynamic drag Cx, the atmosphere:
coefficient of aerodynamic moment mz,
and the coordinates of the center of = + Vr
pressure id as functions of the 0.
satellite angle of attack ac Here V is the vector of

the satellite velocity;
Yr is the vector of satellite velocity relative to the rotating
atmosphere; the projections of the vector v on the axes of the
system Cx0 y0z 0 are of the form

4I



V[VL/(1 +ecosv); 1/-esinv; 10.

Neglecting the orbital precession in a revolution, we can repre-
sent the projections of the vector vr on the axes of the system
Cx0Y 0 z 0

vr- r -r( o ) cosi; ; -r(e+) sinicos Il.

The modulus of the vector v0 is /6

1+ eos v) - (o ea)rcosij --

+ - e2 sin 2 v ) ( 2  in2 i cos u.

The direction cosines of the vector v0 in the system Cx0y0z0 will
be v(B1;8 2 ; 3 ), where

1 / JL(1 ±+e cos v) - (oe+ T) r cos i e sin v

3o . L2--,Sr

V0

e, i, and v are the osculating elements of the orbit; we is the
angular rate of rotation of the Earth; a is the "index of circula-
tion" -- the angular velocity of the motion of air in the westerly
direction relative to the Earth's surface; r is the modulus of
the radius-vector of the satellite center of mass; p is the focal
parameter; and p is the gravitational constant of the Earth.

The position of the longitudinal satellite axis Ox, coincidingin our case with the vector of solar orientation s to a precision
of +21, is determined by two angles -- right ascension al and
declination 6. The direction cosines of vector s in the system
AxaYaza will be

s = cos 6 cos al;

sY, = cos 6 sin c.;

sz = sin 6.

5
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Sr j Date
i67 o20.v/ V/ 0VlO/ O. 0 V// JO.VI /1 .V/// 29I/// Y./X Kosmos-166
96 fO.V// 2 .ZO TJ.// 9.Y// .///19 ///.//X ./8X Jb 2./ .X 6. .X 2.x Kosmos-230

ZO.X a.x Xl .x.X/ .X 9.///.x// .0. Interkosmes-1,
1/// 19t70 Interkos"mos-4

Fig. 3. Actual values of the satellite angles of attack
in the orbital perigee:

1. Interkosmos-1
2. Interkosmos-4
3. Kosmos-166
4. Kosmos-230

The direction cosines of,,the vector s in the system ExOYeZe are
as follows:

se = cos 6 cos (a, - Qo);

se = cos 6 sin (a - o);

se= sin 6,

where n0 is Greenwich ephemeris time, g= (N--N+1)+lWex 3600 /7

SO is the true stellar time of universal midnight; k is the
correction for the difference between the stellar and mean solar
times; N is the number of the time zone relative to which the
time is reckoned; and t is the zone time.

The direction cosines si (i = x, y, z) of the vector s
in the system Cx0y0z0 will be

s9 = ols9+ oi2se+ oi3s
e,

where a,, a5q, C = 1, 2, 3) are the elements of the matrix
of the conve sion rom the terrestrial coordinate system to
the orbital.

6
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0.4 i I Date
i/967 20.Vl Z V/ 7 OY/ V/ VI 9.V/ IIv/ 9.Vl / g.VliV / X 2.' / o.X Kosmos-166

1968 : O.V Y 20/? JVII/ 9.v/// IV/llZl.V/ll 2 .ix 18.1X 2./X. 8.X IO.x 28.x Kosmos-230
20.X O.X 9.X igr/ 2.X1 9.X/ 2 X 5.IX// //9./ 8 d./.12 Interkosmos-1

19M9 , 9yo Interkosmos-4

Fig. 4. Instantaneous values of the coefficient of aero-
dynamic dragnin the orbital perigee:

1. Interkosmos-1
2. Interkosmos-4
3. Kosmos-166
4. Kosmos-230

The instantaneous value of the satellite angle of attack a
is defined from the scalar product of the vector v0 and s:

a = arccos (31s0 + 2s, + 3ssO).

Figure 3 presents the time-varying actual angles of attack as of
the satellites Interkosmos-1, Interkosmos-4, Kosmos-166, and Kosmos-
230 in the orbital perigee calculated by the method presented.
Knowing the actual angles of attack permits the more exact deter-
mination of the instantaneous values of the aerodynamic characteristics.
Figure 4 presents the instantaneous values of the coefficient Cx of
the satellites under study in the orbital perigee, obtained from the
data of the plots in Figs. 2 and 3. The drag.coefficient Cx of the
Interkosmos satellites is a smoothly varying function of the life-
time in the range of values 0.5-2..6; here the area of the midsection
is assumed constant and equal to the area of the projection of the
satellite onto a plane normal to the satellite axis of symmetry.

7
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Fig. 5. Density of upper atmosphere from the data on the deckleration of the satellites
Interkosmos-1 (a), Interkosmos-4 (b), Kosmos-166 (c), and Kosmos-230 (d) (0 = corresponding
densities according to the model CIRA-65). [Key on following page.]
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\.Key to Fig. 5: 1. t1 o, hr

2. km.

3. kg-sec 2 /m 4

ii. w/m 2 .Hz

Using the actual flight data of the satellites Interkosmos-1, /8
Interkosmos-4, Kosmos-166, and Kosmos-230, an analysis was made
of the calculated and experimental aerodynamic characteristics.
To do this, from the variation in the satellite orbital parameters,
the density of the upper atmosphere was determined and compared
withthe data of the upper-atmospheric model CIRA-65; the actual
momenta imparted to the orientation system of the Kosmos-230
satellite in flight were determined and compared with the calculated
aerodynamic momentum; also compared was the actual lifetime of the
satellites with their predicted values.

The upper-atmospheric density was determined by a method
presented in the works [9, 10]. Figure 5 presents experimental
values of the density Pex obtained by using instantaneous values /9
of the coefficient Cx corresponding to the actual as (see Fig. 4),
and also the altitudes above the Earth surface h, local time tlo,
and the index of solar activity F1 0 .. Here also are presented,
for comparison, the densities PCIRA from the data of the CIRA-65
model, taken for the corresponding experimental values h, tlo,
and F1 0 .7 . Here the effects associated with the geomagnetic activity
and the semiannual variations in density were not taken into account.

The differences between the semiannual values Pex and PCIRA
are accounted for mainly by the effect of semiannual variations,
which are expressed by a density maximum in October-November and
in Aril, and by a minumum in July and January [11]. The lifetimes
of the satellites Interkosmos-1, Interkosmos-4, Kosmos-166, and /10
Kosmos-230 cover these characteristic periods (except for April).
From the plots CFig. 5) the mean relative deviations of Pex from
PCIRA were determined, characterizing the semiannual fluctuations
in density; the data are given in Table 2.

During the flight of the Interkosmos series satellites,in
the altitude range h R 200 - 600 km, the main perturbing factor
affecting motion relative to the center of mass is the aerodynamic
moment. To maintain constant orientation toward the Sun, the
satellites are equipped with an electric flywheel system
of orientation, which continually compensatqs for the action
of the perturbing aerodynamic moments, each time imparting to
the satellite a momentum equal in magnitude and opposite in
sense to the momentum of the external aerodynamic forces. For
unloading of the flywheels, on board the satellites is a gas-jet
system periodically compensating the momentum accumulated by the

9



TABLE 2.

Period Considered Satellite Mean Relative Deviation
of Experimental Density
Values from Model Values

C(PIRA - ex )/Pex

15 Jul - 24 Aug 1967 Kosmos-166 0.44
5-22 Aug 1968 Kosmos-230 0.32
1-29 Oct 1968 Kosmos-230 -0.35
27 Oct - 29 Nov 1969 Interkosmos-1 -0.38
21 Oct - 2 Nov 1970 Interkosmos-4 -0.59
10-16 Jan 1970 Interkosmos-1 0.09
1-7 Jan 1971 Interkosmos-4 0.28

flywheels. Thus, it was of interest to compare the actual momentum
M~ communicated to the satellite by its gas-jet system, with the
calculated momentum Mma of the external aerodynamic forces obtained
for the actual parameters of satellite orbit and orientation.
This comparison is made below for the example of the Kosmos-230
satellite.

Using the law of conservation of momentum [12], for a certain
time interval tO - tk we can write the equation

tk

S Maetr Mcon t,
to i l

where Maer = (1/2)mzALpvo is the aerodynamic moment; Mcon = Rl
is the control moment; ti is the time during which the engine of
the gas-jet system is operating at the i-th cut-in; R = POfcrKp l
is the engine thrust; pO is the pressure in front of the nozzle;
fcr is the area of the nozzle critical section; K is the thrust
coefficient; # is the coefficient of losses in the nozzle; and
1 is the arm at which the engine thrust is applied relative to
the center of mass.

The time ti in some interval tO - t is defined from the
mean value of the pressure drop Pav in te cylinders of the gas-jet
system on the assumption that a single nozzle is operating.
Figure 6 presents the actual values of p for the Kosmos-230
satellites. The sawtooth nature of the variation in p is -
accounted for by fluctuations in the temperature T of the gas
in the cylinders:
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•. .RgT
t T

i =ApVc

where c is the specific nozzle consumption per second, Vc is
the cyl hder capacity, and Rg is the gas constant.

Since the directions in which the engines of the gas-jet /11
system act are at the angle 7/2, and the direction of the action
of the momentum vector is equiprobable, the experimental values
of the momentum Mex corresponding to the maximum R1 and the

minimum Ri/cos- control moment were determined (Fig. 7), The

momentum due to the action of aerodynamic forces was integrated
over the intervals t0 - tk; here the limiting deviationsedf
the calculated values of the modulus of the coefficient mz (see
Fig. 2) corresponding to the angle of attack as at the perigee
(see Fig. 3) were used. The density of the upper atmosphere
was assumed according to the CIRA-65 model for the altitude
h '+ XH (here hp is the perigee altitude, H is the altitude of
the homogeneous atmosphere, and X is a coefficient that allows
for the ellipticity of the orbit), the local time at the perigee, /12
and actual level of solar activity Fi0.7. The region of the
possible calculated values Mm is given in Fig. 7.

From this figure
it follows that in

_I _the period from 7

1968, when the angles
1501 of attack as were

small (as 10-400),
14o-- 7the regions of the

values Me and Mm
e a

120 coincided. In the
periods from 27 July

too to 4 August, and from
Soo oo 00oo 500 00 000 1200 10oo iMrevolutions 20 September to 21

October, when the
as values were 50-700,

Fig. 6. Variation in actual pressure in and the calculated
cylinders of the gas-4et system of the values of mz had
Kosmos-230- satellite; maxima, a deviation
the thicker line corresponds to the was observed; Mm was
mean pressure approximately 60 and

C70-80)% of MW,
respectively. This deviation can be accounted for by the following
causes.
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Fig. 7. Actual 1e and calculated Ma values of the momentum
due to the action of aerodynamic forces of the Kosmos-230
satellite:
1. Region of possible actual values I; m
2. Region of possible calculated values Mm

1. Since the satellite is a body of complex configuration,
molecules reflected from the surface undergo multiple collisions
with the surface (interference effect). In the case of the
Kosmos-230 satellite for which the angles of attack are in the
region as < 900, the interference is characterized by the collision
of reflected molecules with the reverse side of the solar batteries.
This leads to the generation of a moment Mg that is opposite in
sense to the perturbing aerodynamic moment and, as shown by
estimates, is about 60% of Maer. This ratio of Maer and Mg is pro-

moted by the relatively short distance between the satellite
center of mass and the center of pressure ld calculated without
allowance for interference (see Fig. 2).

2. The values
-d' deg of Mm Csee Fig. 7)

were calculated on
30 the condition of

flow past the
20 satellite at the

!angle of attack
Sas . This con-

20 F 3_76 5 7o 15 20 5,Date dition is not
Ax X 8 exactly fulfilled

especially At the
Fig. 8. Region of possible deviations end of the life-
of the angle of attack of the Kosmos-230 time when the
satellite in the.penumbra 'of the Earth orbit becomes
from the values as calculated without weakly elliptical.
allowing for the shadowed section of the orbit. When the satellite
12



passes the region of maximum aerodynamic head in the region of
the orbital perigee, the values of a can differ appreciably from
as. For example, on 7 October 1968 the angle of attac:k of
Kosmos-230 was as = 570, and the change in a relative to as in
the region of altitudes hp - (hp + XH) was ±350. This reduces
the averaged coefficient mz in the perigee region by about 50%,
and with reference to the averaging of the density leads to an
approximately 25% reduction in Mr'.

3. In the period from 20 September to 21 October 1968 (see
Fig. 5 d), the local time at the point of perigee tlo was tlo =

= 4.5 - 1.5 hours, that is, the region of the perigee of the
satellite orbit was in the shadow of the Earth. Over this
section the satellite executed unoriented motion relative to
the center of mass with the angular rate 6 equal to 0 << < 0.5
deg/sec. This also led to averaging, and in this time range,
it also led to a decrease in the calculated value of mz. The
region of deviation of the angles of attack of Kosmos-230 in
the shadow of the Earth from the as values calculated on the
assumption of a nonshadowed section is shown in Fig. 8.

4. The scheme of reflection of the incident flow of
rarified gas from the satellite surface was assumed to be completely
diffuse. Actually, the parameters of full-scale interaction can
differ from those adopted in this study, which can also account
for the difference obtained in the values of Mm and Ma. The

authors determined the values of Ma using the scheme of inter-
action given in [4], that allows for the dependence of the
coefficients as and a T on the angle of inclination of the area
to the flow. The resulting values exceeded the values of MEa
given in Fig. 7 by a factor of three.

It was of interest to analyze (see Fig. 6) the drop in
pressure p in the gas-jet system cylinders. The values of Pav
in the region of the 560-th to 630th and 940-th to 1060-th /13
revolutions have horizontal sections, indicating the absence
during this period of aerodynamic perturbations. Actually,
during this period the values of a were correspondingly 20-300
and 16-200, for which mz is small tsee Fig. 2), and for certain
angles the possibility that mz 0 .is not precluded.

The precision of the calculation of aerodynamic forces as
an integrated icharacteristic can be determined by comparing the
actual ballistic lifetime of satellites with the calculated
values.

13



TABLE 3.

Ballistic Lifetime of Satel- Relative Error,
lite in Orbit, Days %

SatelliteSat.eli.t . Actual ... Calculated

Interkosmos-1 80 82 2.5
Kosmos-166 131 128 2.0
Kosmos-230 120 118 2.0

The calculated time was found by integrating the system of
differential equations of the motion of the satellite center of
mass in osculating parameters [13], on the assumption that the
Earth gravity field corresponds to the potential of a three-axis
nonsymmetric ellipsoid. In the calculations use was made of
the values of the upper-atmospheric density from the data of
the CIRA-65 model, corresponding to the daily values of the
index F1 0 .7 and to the local time of the satellite track point.
The coefficients of the satellite drag Cx at each instant of
time corresponded to the actual angles of attack as. The cal-
culation results are in Table 3.

The results of analyzing the actual parameters of the motion
of Interkosmos series AES indicate the adequate reliability of
calculated values of aerodynamic forces and moments obtained by
using the wholly diffuse scheme of reflection ((an = aT = aac = 1)
and the upper-atmospheric model CIRA-65.

The authors are thankful to G.I. Zmiyevskaya for discussion
of the results, and to N.M. Lukonin for assistance in the
calculations.
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SELECTION OF EXTREMAL TRAJECTORIES FOR THE /14
LAUNCHF:AES :FROM ORBIT

N.F. Gerasyuta, E.P. Kompaniyets, and A.A. Krasovskiy

Much attention at present is being given to the problems
of determining extremal trajectories in space ballistics. In
most studies the problem of the transfer from one given point
in space to another along a trajectory ensuring the minimum fuel
consumption is solved. As the optimized functional, use is

made of the integral of the form .Smdt , characterizing the
to

consumption of mass during the fligh-t, that is, essentially,ifor
a specified engine operating regime the duration of the powered
trajectory section is optimized. The boundary conditions at the
boundary points in this case are assigned completely or some of
them remain free. For incompletely assigned boundary conditions,
also considered as an additional optimized functional are the
parameters of motion at the left [l] or right [2-4] eridpoints
of integration (velocity, altitude, range, angle of inclination
of the velocity vector, and so on) appearing in the coupling
equation.

For the case when it is necessary to optimize a certain
functional dependent on several or on all parameters of motion
(altitude of apogee, altitude of perigee, orbital eccentricity,
period of revolution, energy, etc.), the solution is considerably
complicated and requires a very long time even when electronic
computers are used. This article proposes a method for optimizing
the trajectories of launch from orbit of AES, starting from the
final target of injection into the assigned orbit. Any charac-
teristic of the resulting orbit can be selected as the optimized
functional (apogee altitude, perigee altitude, period of revolution,
velocity at any point of the orbit, angular position of the perigee,
focal parameter, etc.).

Formulation of the problem. The position of an object in
space is completely characterized by six orbital elements (, i, w,
a, e, and T).

For individual cases Ccircular or parabolic orbits), several
of these elements are meaningless.

In addition to these main elements, in celestial mechanics
other quantities are also used, replacing them [5].
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Hyperbolic Orbit Elliptical Orbit

0, i, o, a, e, T; o, , O, a, e, r;
a, h.n; n, n, (p', E;

at, PT, , P; aT, , cT, T, M0;
h,,, h,;

P

Here the substituting elements are written under each of the
main elements that they can replace.

When space objects are launched, the assigned value of the
orbital parameters on which the execution of the given mission
depends must be ensured; the remaining parameters, obviously, can
be selected arbitrarily.

Let us examine methods for ensuring assigned orbital parameters.

1. The parameters Q, i, w and their substituting elements
determine the orientation of the orbital plane in space (Q, i)
and the orientation of the major axis in the orbital plane (w). /15
The assigned values of these parameters for an assigned launch
point (4r6, X0 ) can be ensured without energy expenditures as

te result of selecting:

a. the instant of launch from Earth, and by varying this
quantity in the range Oh < t < 24h we ensure any desired
value of Q/from the range-0 <-Q < 3609;

b. the azimuth of the launch, and by varying this in the
range -900 < 90 < +900 we can ensure any value of the
parameter i from the range (r - r0) _ i < fro; and

c. the instant of launch from the parking orbit, and by
varying the instant of launch from this orbit in the
range 0 . t t, one can ensure any value of the param-
eter w from the range 0 . w w 3600.

2. The parameter T and the elements replacing it determine
the position of the satellite in orbit at the initial instant of
time. The assigned value of this parameter can be ensured by
using the intermediate orbit through selecting the corresponding
revolution for the transfer to the assigned orbit.

3. The remaining elements (a, e) and their substituting
elements Ch ha, P, T, n, and 't) determine the dimensions of
the orbit and its shape, and under otherwise equal conditions
depend wholly on the parameters of the endpoint of the powered
section of the trajectory of the satellite injection into orbit.
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Therefore, the main requirement which the selection of the
injection trajectory must satisfy is to find the optimal law of
control of the launch vehicle flight ensuring the attainment of
the assigned value of some functional of interest to us (a, e, hT,
ha, ...), for minimum energy expenditures or determining the
trajectory ensuring the extremal value of some functional (h, ha,
P, T, n, t', etc.) for assigned energy expenditures.

Let us examine the motion of a spacecraft (SC) acted on by
a planetary gravity field and the SC powerplant. We will assume
that the SC has first been injected into a circular or elliptical
orbit. At some instant of time it is necessary to execute a
maneuver to perform an assigned mission: to leave the planetary
sphere of attraction; to transfer to an elliptical orbit; to land
on the planet's surface, etc.

Let us find the trajectory ensuring, for assigned kinematic
parameters of the start of the trajectory, the extremal value of
some functional I at the moment of engine cut-out, which we will
assume to be given. The form of the functional I evidently will
depend on the missaon to be performed. Owing to reciprocity,
the resulting solution will ensure also the attainment of the
assigned value of functional I with minimum fuel consumption.

We will assume that the trajectory of the SC in space is
defined if we obtain a closed system of differential equations
describing the motion of the SC centerof mass and if the
initial conditions for the integration of this system ensuring
the attainment of the extremal value of functional I are
selected.

Let us examine the case when the maneuver of the SC occurs
in the plane of the initial orbit defined by the parameters of
SC motion at the initial instant of time. This assumption,
without diminishing the generality of the results and without
introducing fundamental and essential errors into the analysis,
enables us to simplify our analysis and to select the extremal
trajectories.

The system of equations adopted. Let us limit ourselves to
the case when the mass of the rocket and the engine thrust are
assigned functions of time.

We will solve the problem given the following simplifying
assumptions:

1. the planet is a sphere with radially distributed density
of mass;

2. the linear dimensions of the spacecraft are insignificant
compared with its distance from the center of the planet;
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3. the drag of the medium is absent;

4. the component of the thrust expended in control is /16
negligibly small compared with the total thrust; and

5. the control system and the power unit operate ideally
-- the vector of the engine thrust always coincides
with the programmed vector.

The differential equations of motion in this case in the
launch system of coordinates can be written as:

dVx P
- COS (P - gx,

ax -v,, (1)dt M
dy V
dt

The system will be closed if the dependence of the parameters P,
m, and ¢ on the time, and the dependence of the parameters gx and
gy on the coordinates are assigned.

The projections of the acceleration of the force of gravity
onto the axes Ox and Oy can be represented as:

xR2

gx = go
[(R + y) + x jl*'

(2)g(R + y) R2

[(R + Y)2 + x '/, ,

or xg = k
S [(R + Y) t + X2]"1 -'

(3)
gy = k R+y

[(R + y)2 + x2] 3/

Considering that in solving these problems the extent of
the powered section of the trajectory of the launch from orbit
is assumed to be more or less restricted, in order to facilitate
the solution of the problem, let us simplify the expressions for
gx and g. We will expand them in series in neighborhoods of
the poinW CO,O) and, by limiting ourselves to the terms contain-
ing x and y to the first power, we will get the approximate
formulas:
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X

g = go -,

g = go - 2go 
(4)

Equation of extremal trajectory. The trajectory of a SC
is described by four first-order differential equations:

= Vx - -- cos q + k = 0,
m [(R + y)' + x213 '

S P sin p + k = 0,_,,1 (R + 02 + X;";/" = 0, 5)

(o = x- VX = 0,
O, = y - Vy = -0,

which are differential equations of coupling between the parameters
Vx , V , x, y, and 4. These equations include one independent
variable g, five dependent variables Vx, Vy, x, y, and 4, therefore,
have a single degree of freedom. Thus, for any assigned system of
initial conditions xo, y0 , Vx0, and Vy0, there is an infinite set

of possible trajectories differing by a law of control of SC
attitude in space ¢ arbitrarily assigned for each of them.

Suppose kat.;; the initial instant of time t - t0 the kinematic /17
parameters of motion of the variable-mass point m0 are assigned:

xo, 0 , Yo VXo, V1W. (6)

If over the time interval t0o, tkl the law of control 4 of
the SC attitude in space is assigned, the trajectory of the object
is determined uniquely, since in this case we have the unique
solution

x = V1 (xo; y0; Vxo; IVo; cp);
y = V (Xo; Yo; Vxo; Vo; cp),

Vx = V 3 (xo; Y0; VXo; Vo; (P), (7)
VY = 4 (Xo; Yo; Vxo; VYo; p).

It is required, among all controls 4 transferring the SO from
a point with parameters x0, y0, VxO and VyO, :to the point in space

Xk, Yk, Vxk and Vyk, not explicitly assigned, to find the control 4
tht provides the extremum for some functional
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(8)

dependent on the kinematic parameters of motion at the endpoint
of the powered trajectory section. We will call the trajectory
satisfying this condition the extremal trajectory.

In determining the extremal trajectory, we will not specify
what the functional I is. We will leave it in the general form
(8), assuming that first derivatives of this functional exist
and that they are continuous over the time interval It0, tkl.

Let us solve the problem for the arbitrary extremum of
functional (8). To do this, let us examine a new functional:

k

": (9)F = I + Hd =f(x; y; Vx; V) - \ Hdt.

Here, the integrand function will be of the form

H = 1 01 + 22, + '3i + ie (10)

where li, X2 , X3 and XI4 are certain, thus far undetermined, .
functions of time; wl, w2 , w3 , and w4 are determined according to (5).

By virtue of condition (5), functional (9) is equivalent to
functional (8), since the integrand H tends to zero for any values
of the parameters Xi .

Obviously, variations of these functionals will also coincide.
Let qi stand for the functions qi = x, y, Vx, V ¢ being varied
and let us take the first variation of function l (9):

1=t tk 5 1=ik

6Fq = s6q + a + H dtHdt
i1 = to i=1 =!

Integrating by parts:, we get:
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5 t=k 5 5 k

5 V 6H "H aF = q + H - qi
i=1 n, =t i=1 i=1 0 a q-

5 tk (12)
+ aH d iaH 6qdt.

Let us make an analysis of the variation of functional F.

The first term in expression (11) can be rewritten as:

5 It=tk

6Q = L q 6 qj = 6Vxo + YVYo + 6xo + ' 6o +
u .i=IT C)tO

a_ a at a' at al (13)
d xk a + V axV + xk 6Yk + 0pPo + k

At the initial instant of time t = to, the values of the
functions being varied are assigned, and therefore their variations
are equal to zero:

6Vx= 6Vo 6x y= 0. (14)

Assuming that function I does not depend explicitly on the
pitch program, we can write the equality:

sI/4 = 0 (15)

for the entire interval of integration.

Therefore, expression (12) becomes simplified,

8Q = -svx + -v, + x, + ~-7. (16)Va6Vk + 6xk+-- -- 6 Uk (16)

Let us examine the second term in expression (12).:

5 
5 

1=t k
0H ) 6/ ± !6 aH_
Ht+q i=1 9qj It= to

H H t=tk 5 OH (17)
q + 0q _. j_. 6q,

t=t, i=I =t
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Since the length of the interval of integration Ito, tk
is assigned, the variation 6t must be equal to zero:

6t = 0 (18)

With reference to conditions (14), (15), and (17), we can
rewrite the second term in expression (12) as:

5 t-th 5

[aq i=l 1tt i=t

H aH aH OH (19)
6Vk + kV + x, + + H 6(pk

Okyk a; OYk ('Pk

Since the function H does not depend explicitly on the
derivative" , obviously, the equality

aH 0H o. (20)0rPk

obtains.

aH OH aH OH
Let us determine the derivatives Vx ' ' and

by using (10) and (5): Oak

OH - Ik; H k3k;
Vx OXk (21)
OH OH

S~X2k; 4k-
aYk

From expressions (12).- C21), it follows that the variation /19
of the functional .9) will be of the form:

a at at at
6F 6Vxk + d6Vk + 6x, + yk +

+ (Xa6lVxk + X2k6 Vyk + 3k
6 Xk + X4k%6Y) +

5 tk (22)
+ -q6 dtdt,

i=1

d al aI at
where a-vx , and a are the derivatives of the functional

Vxk ' Y ' OX i OYk

being optimized with respect to. the corresponding functions at the
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instant of the endpoint of the powered section ((t = tk); hlk,
X2k, X3k, ,atdq.h4k are the values of the. functions hi at the
endpoint of the powered section.

By grouping ,the terms in expression (22) containing iidentical
variations of the functions &Vx, 6Vy, 6x, and 6y, we get:

6F =( + lk) 68Vk + ( +a +±X2k yk + (0 + %3k) X +

5 k[ (23).d [ aH _ d a- 8qmdt.a+4kY Oqi dt j qqid l
to

Assuming that there is an internal extremum for expression
(23), let us find it from the condition:

6F = 0 (24)

For variation (24) to approach zero, it is necessary that
the functions qi (Vx, Vy, x, y, f) being varied satisfy the Euler-
Lagrange;.: equations:

OH d (H \0
Oq1 dt 1qI) (25)

and the Lagrangian multipliers (Ai) will be selected so that at
the right endpoint of integration the following relations are
satisfied:

xk Oxk

2k --- - ,, 1 4k ( 6
Yk -)Yk

The system of equations C25.) is a necessary condition for
the extremum of functional (91.

The Euler-Lagrange equations C25) for functional (9) depend
on the form of the coupling equations. For coupling equations (5),
they can be written as;

x + = 0 , (27)
(28)
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a- -i, (r2 - 3x) - 3 2,x (R + y)] = 0, (29)

4 - 7- ( 2 r2 - 3 ( + &)1 - 3ix (R + y)) = 0,1
P

-P-(l 1 sinp - cosq) = 0. (31)

By solving equation (31), we find:

(p = arctg-. (32)

The system of equations of the extremal trajectory can be /20
written as:

P x

Vx = - cos <p - k
im (R + ) + x21/ '
P -k R+yV = -- sin cp - ky

S m I(R + y)" + x"If'  '
x = V

S= - X1, (33)
k

S= -r [l, (r2 - 3x 2) - 3, 2x (R + y),

S-=- ,, [r2 - 3 (R + YI - 3;1x (R +- y)},

p = arctg 2,

P = (t),

m = mIn (1).

The system of equations (33), together with the initial con-
ditions of motion of the variable-mass point at the initial instant
of time C61 and the boundary conditions at the right endpoint (26)
gives the complete solution to the problem formulated. Here, the
pitch program = Ct), defined by Eq. (32), cannot be obtained
in explicit form, since the system of linear differential equations
(27) - C301) with variabTe coefficients Cx, y) is not solvable in
explicit form with respect to the Lagrangian multipliers Xi. To
find the extremal trajectory, we must select the initial values
of the Lagrangian Jmultipliers N01 , which at the endpoint of
the integration interval ensure the boundary conditions (26). The
Lagrangian multipliers A(0 can be selected by using any iterative
methods.
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In practice, the extent of the powered trajectory section is
limited in the number of cases. Then finding the extremal
trajectory is simplified owing to the possibility of introducing
simplifications into the coupling equations (5). Let us examine
the same problem of determining this trajectory of the variable-
mass point in a central gravitational field that furnishes an
extremum to the functional

I = f (x,; yk; Vxk; Vyk), (34)

dependent on the kinematic parameters of motion at the endpoint
of the powered trajectory section. We will also assume that the
time interval Ito, tk ih which we seek the extremal trajectory
is specified.

Let us replace the differential coupling equations (5) with
the corresponding simplified equations.:

S= Vx - cos + v2X = 0,

o, = V - -sin p + go - 2v2y = O,'i (35)

o)4= y - = 0,

where v2 = g0 /R.

By bringing into consideration the equivalent functional: /21

F= I+ Hdt= I + eiwidt (36)

and following the same reasoning that was given above, we obtain
the result that a necessary condition for the extremum of functional
(36) (the approach to zero of the first variation) requires that
the functions qiCYx, Vy, x, y, c) and hi (i = 1, 2, 3, 4) satisfy

the Euler-Lagrange equations:

OH d aH

q t -q ' - O. (37)

Let us simultaneously obtain the boundary conditions at
the right endpoint of integration tk:
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dv 7- 4k"

The Euler-Lagrange equations for functional (36) can be
written as:

(39)
(40)

1, v- 2, (
(41)S= - 2v,,

- , sin p -- , cos q) = 0.m mn (43)

From Eq. (43), we get the optimal pitch program:

q = arctg-. (44)

Equations (39) - (42) are a system of linear differential
equations with constant coefficients and can be integrated.

By integrating Eqs. .,(39) and (40), and by using Eqs. (41)
and (42), we get:

(45)
, == -X3  - 1 v2, 4

X- 2X2 
(46)

By setting up the corresponding characteristic equations

PI = -v 2, (47)
p. = 2v2 (48)

and by solving them, we get the roots. of the characteristic
equations:

P11 = iv, P2 = - iv, (49 )

P21 = /2, P2 = - 1/. (50)
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The general solutions of the homogeneous differential equa-
tions (45) and (.46) can be represented as:

12 = f, cos t + f2 sin vt, (51)

22 = f3e 't + fle-ot, (52)

where fl, f2 , f3 , and fq are certain constant coefficients; w= /~v.

With reference to (39) and (40), we get the expressions /22
for A3 and X4:

= fly sin vt - f2 COS VI, (53)
4= -foe t + f4coe-'. (54)

Let us define the constants fl, f2 , f3 , and f4 in Eqs. (51) -

(54). Using the boundary conditions at the right endpoint of
integration (38), for the Lagrangian multipliers weecan write:

h k = - a = f Cos vtk + f2 sin vt,

%2k = - Vuk -f3e (
t
k + fe-tk,ai (55)

3k= - k = f1v sin tk -f 2v COS vtk, (55)

%4k = - f3etk + f4oe-(tk.

By solving the system of equations (55) for fi, we get:

- vcos vt - O2k Sinl k

avxk dXk
f2 v

at al (56)
o+

dVyk dyk
f3 = 2ceo k

ay ai

f4 = 2w-ot
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The optimal pitch system (44) providing an extremum for
functional (36), with reference to expressions (51), (52), and
(56), can be represented as the following function:

Co ch o (tk - t) + sh o (tk - t)
= arctg {+ •7

(5 d7)
x1 v cos v(tk - ) + sin v (tk - t)
xk

The expression for the optimal pitch program, given the
simplified representation of the Earth's gravitational field,
is analogous to the results obtained by D.B. Okhotsimskiy and
T.M. Eneyev in solving the problem of determining the optimal
control 4(t) ensuring maximum level-flight velocity Vk at the
end of the powered section at a specified altitude hk [11, and
is a generalization of the results they obtained for an
arbitrarily assigned functional, dependent on kinematic param-
eters of the end of the powered trajectory section.

In this case, the system of equations of the extremal
trajectory and the final relations can be written as:

P
Vx COS (p - V2X,

V = - sin -- go + 2v2 y,

S= V, \/23
So c ch a (t - )+ sh o (t( - 1)r = arci d ' (58)

v cos v (
tk-- ) + sin v (tk - t)

OVxk Odxj

P =P (t),

m = m (i),

v=1/i,

The system of equations C581, given the initial conditions
defining the motion of the variable-mass material point at the
instant t CG6), wholly defines the extremal trajectory of this
point.

Further simplification of the equations of the extremal
pitch program providing an extremum for the functional of the
type Q8) can be made .for the plane-parallel field by the method
given above. In this case the formula for determining the
optimal pitch;qprogram is of the form:
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01 . Olav ay'-' -' t
S(tk-

tg T= a -- T- (59)
Vxk - Ox (tk - t)

Expression (59) is analogous to the results given in the
studies [1, 6-8].

Legendre-Klebsch condition. i To evaluate the maximum or
minimum value of the functional 'for the extremal trajectory, just
as in finding the maximum (minimum) of functions, we must deter-
mine the sign of the second variation. The Legendre-Klebsch
condition is a supplementary necessary condition for the existence
of the extremum and determines its form.

As assumed above, the functional

to

is linear relative to the first derivatives and obtaining the
second variation, and therefore, any evaluations concerning the
maximum or minimum of the functional achieved on this extremal
trajectory does not appear possible.

It is shown in the work [2] that in solving problems of
finding the optimal trajectories of SC, one must include among
the functions being varied the controls u of the magnitude and
direction of the thrust vector. Here a necessary condition for
the maximum value of the extremum of the functional is that
along the extremal between the nodal points the inequalities

'2F
e=' 6E

2  
6FO <0, (61)

1,k=l

be satisfied, and a necessary condition for the minimum value of
the extremum of the functional is that along the extremal between
nodal points. the inequalities

e= dinrit >0, (62)

be satisfied, where n is the number of functions being varied,
fi and fk are the functions being varied.
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The absence of the equality sign corresponds to the strength-
ened Legendre-Klebsch condition.

In our case, for optimization, the Legendre-Klebsch c /24
,e-function can be written as:

5

e= O 6Olki,  (63)
i,k=l

where Tl " Vx, , 2  Vy, n3 = x, n4  y, and n.,= c.

Extending expression (63) with reference to (60), (5), and
(10), and assuming that only the first derivatives of functional
(60) exist, continuous over the segment It0, tkl, we get:

e = (X1 cos op +- X sin rp) (&6r)f .  ( 64)

With reference to the Euler-Lagrange equation (31), we will
have:

os or e (65)

Based on expressions (61) - (65), we can make the following
conclusions:

1) the optimal pitch programs providing a maximum for
functional (60) must satisfy over the segment Ito, tkt
the condition:

cos p <o or <o0; (66)

2) optimal pitch programs providing a minimum for functional
C60 must satisfy over the segment Ito, tkI the condition:

>0 or >. (67)
cos q, : sin (p

From conditions (66) and (67) it follows that:

1) in the acceleration of the SC, when the .pitch program
over the time interval [t0 , tkl lies within the range
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(P < < + - ', the maximum value of functional (60) is

realized when:

X1 < 0 (68)

and the minimum -- when:

A > 0 (69)

independently of the form of the function I to be
optimized (whether it is the apogee altitude, the velocity
at the end of the powered section, the energy, the semi-
major axis, the period of revolution, eccentricity, etc.);

2) in solving problems in space ballistics associated with
the deceleration of a SC (launch from orbit, transfer
from a high-altitude circular orbit to an elliptical orbit
with minimum perigee altitude, etc.), when the pitch
program over the time intbrval Ito, tkl lies within the

range .3q jt, the maximum value of functional (60)

is provided when:

X1 > 0 (70)

and the minimum -- when:

Xl < 0 (71)

3) when the pitch program 0 passes through zero or /2,
the parameter X2 must also reverse its sign, i.e., it
must pass through zero.
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ANALYSIS OF PROBLEMS OF SPACECRAFT NAVIGATION
AND CONTROL

V.V. Gorbuntsov, V.G. Komarov, V.F. Lagert,
G.L. Madatov, and A.T. Onishchenko

Trajectories of spacecraft can be divided naturally into
sections that are specific as to the nature of motion, and
control tasks and methods.

The first (powered) section, along which motion occurs near
a planet with sustainer engines functioning, differs by its high
energy indicators for a relatively short flight duration. These
characteristics of the powered section lead to the necessity of
energy optimization of control with the presence of a series of
constraints on the trajectory and the control system.

Numerous problems in optimizing programmed motion (maximum
response, minimization of fuel consumption, etc.) can be reduced
to the Mayer variational problem. The shortcoming of classical
methods of solving the problem is the necessitynof setting up an
auxiliary system of differential equations, whether the Euler-
Lagrange equations in the problem with unconstrained variations,
or the Hamiltonian system of equations in the principle of the
maximum with constrained variations [5].

The method of dynamic programming yields numerical algorithms
that lack this shortcoming, but their realization in the general
case requires the storage of cumbersome tables. The problem
of reducing dimensionality usually requires in each case an
individual examination and some computational art. The sequential
procedure presented below -- the method of envelopes -- in several
cases of practical importance is more economical than the classical
algorithm of dynamic programming.

The second (passive) section is marked by a long duration and
low energy outlays. Here the problem of determining trajectory
emerges to the fore. Regardless of whether this problem is solved
on Earth Ctrajectory calculations) or in an onboard digital
computer Conboard navigation), requirements of high operating
economy and precision are imposed on the algorithms.

Most known algorithms for the operational calculation of
trajectories, for example, trajectories of the class Earth- Moon-
Earth [3, 9_, 10], yield only an approximate solution to the
constrained three-body problem. The methods presented below for
determining the parameters of the motion of spacecraft .(SC.) over
the passive flight section in the gravitational field of several
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attracting centers -- the method of independent actions and the
method of imaginary masses -- are convenient for the operational
solution of both the constrained and the unconstrained n-body
problem, are economical, and are not inferior in precision to
methods of numerical integration.

The method of independent actions is based on the approxima-
tion of the true trajectory of the object of interest in the
n-body problem by a sequence of geometrical sums of unperturbed /26
trajectories in the two-body problem, calculated on the assumption
that the object of interest is in isolated interaction with each
attracting body of the system. In the method of imaginary masses,
the true trajectory of the object of interest is approximated by
a sequence of sections of unperturbed trajectories in the two-
body problem relative to some variable imaginary attracting mass.
In both methods, calculation of the true trajectory reduces to
determining at the calculation step the parameters of the motion
of the object from the final relations of the theory of Keplerian
orbits.

A special place among problems of control over the passive
section is occupied by problems of optimization of the control
of the motion of an object around the center of mass. Here the
main requirement is usually the minimum energy outlays while
ensuring the required precision arid operating economy of the
algorithms from the standpoint of instrumental realization.

Finally, the last section -- the section of descent onto
a planet, just as the powered section, imposes increased require-
ments on the programs of the control system, since a number of
requirements that are technically difficult to achieve and
contradictory, aimed at ensuring the viability of the object
in the difficult conditions of motion, are imposed on the
trajectory of the object. The solution of these problems often
reduces to complicated nonstandard variational problems. Applying
the principle of the maximum [51 gives a positive result when
solving a broad class of these problems.

The method of envelopes. Let us examine the proposed
procdurefor optimization with the example of the solution to
the problem of maximum response for a second-order object
(n 2 1:

x = f (x, u, t),
x (to) = xu, E U, U, 1)

where x = {xl, x2} are the phase coordinates of the object; u ~is
a scalar control, where we will first assume the set U of admis-
sible controls to coincide with the space of smooth functions;
f = {fl, f2 } s a vector function, differentiable and continuous
together with its derivatives, such that:
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, _2_ fr, 0-o. (2)

Further, we will assume that for a fixed x and t, the set of
vectors fCu, C) is convex. It is required to select the control
u(t) so that the object occupies, in the minimum time T, the
position where LCx) is some single-valued function:

x(T) E {XL :L(x)= 0}. (3)

Let us introduce into consideration the time interval At > 0
sufficiently small so that, by preserving the required precision
of the calculations, we can assume over the interval i- =

= ti - At, til that the right sides of Eqs. (1) are constant and

equal to v (ti_1. ui_- (ti 1), ti 1) . Let us write:

X, = x + (x- , uo, to) At. (4)

With the variation u E U , the end of vector xl describes some

curve in phase space, which is the locus of points attained
at the time instant t" t 0 + At. By considering each point of
the curve thus obtained as the initial point for the subsequent
motion, let us write the two-parameter family of curves:

i = 2; xi (;o, uo, ui-) = XI-, (xo, uo) + (i-1, u 1, ti-l) At. (5)

The locus of phase space attained at the instant ti = t0 + iAt
can be obtained, by constructing the envelope of the famidly (5):

i = 2; xi (x, u,) = x(x, u( , u, ._. (Uo)), (6)

where the control u*J u0 ) transferring the object. from curve (4) /27
to envelope (61 Ia defined from the equations [6]l:

i = 2; (D(xo, uo, u-0) 0. (7)- ai

Expressions (5) - (7) can be. written for any i > n.

1 The possible nonuniqueness of the solution to Eq. (7) does not
play an essential role here, since the selection of the corres-
ponding values u*_l is usually determined during the actual

process of solving a specific problem.
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Let us show that the controls given by the solution to
Eq. C7) are optimal. As we know, an extremal trajectory must
satisfy not only Eqs. (1), but also the Euler-Lagrange equations:

d - F= 0, k = 1, 2, .... , n+l, (8)
dt ak k

where the expanded function F for this problem is of the form:

S= (X (X - (9)

= { 1 l(t), X2 (t)} is a vector whose components are variable

cofactors.

After uncomplicated transformations, system (8) can be
represented as:

(A) = 0 (10)

For n = 2, the matrix (A) is of the form

(A) da7 d) I (11)

In order for the system of homogeneous equations (10) to have
a nontrivial solution, it is necessary that IAI = 0, from whence
we get the differential equation to find the u(t). In particular,
when n = 2, we have

u du du/ ax, u
D ( , U, X, t)" - d 0 _ ( 2

au dt ( f o af) (12)

Using relation C5), let us rewrite (7) as:

U a k A/ dt u) o. (13)

Combining the columns on the determinant thus obtained and then
letting At approach zero, we arrive at relation (12). Thus,
Eq. C12) is equivalent to Eq. (7) and the value of the control
given by it is optimal. Here the surfaces (in the case n = 2,

37



they are curves) (6) are the surfaces of the level of a Bellman
function min T. For the problem of dimensionality n = 3, 4, ... ,
we can get an equation analogous to (7):

D(xo, Uo, U 1, u., un-2, Uj1  l O n-2 )aui (14)
defining the optimal control at the i-th (i > n) step -1 =

= -1(U 0 , u, ... , un-2), as a function of n = 1 independent

parameters characterizing the specific extremal; for example, the
values of the controls for the first n - 1 steps can be these
parameters. At each step i = 1, 2, ..., let us directly calculate

O At and I~) . The remaining /28di-v a -1 ti vsx,_ 
() . )

derivatives axi/auk, k = 0, 1, ... , n - 2 appearing in expression

(14) are defined by the recursion formula (axi ) ai- ,
Out Oxi-1 duk

using the values of the same derivatives calculated for the pre-
ceding step.

The procedure is repeated for successive i up to some i = m
at which:

min mix 6(x, XL),
S u l...... n- (15)

is attained, where 6 is the minimum distance (for example, in
the sense Ixi - xL? from the i-th envelope to the points of

the surface L(xL) = 0.

Using the m envelope surfaces thus obtained, let us construct
the optimal control u*Ct) in the form of the sequence Um,lufI 2,

... traversing the envelope in the reverse direction beginning
from the point Xm given by (15), as is usually [2] done in
algorithmsa of dynamic programming.

Computing the envelopes requires storage of (n - l)-dimensional
tables, i.e., the dimensionality of the problem is reduced by one
compared to the classical algorithm of dynamic programming. In
several cases the advantage here proves to be quite substantial,
in spite of the necessity of computing at each step n2 derivatives
(af/D5) and n derivatives af/.u. Additional advantages of this
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method are provided by the fact that in most practical problems
the envelopes are deliberately quite smooth surfaces and their
approximation poses no difficulties.

Let us note that when we use, instead of (7), Eq. (12)
directly obtained from the Euler-Lagrange equations, the
computational advantages are lost owing to the necessity of
additionally computing the derivatives of higher orders (for
example, even for n = 3, instead of n(' + 1) = 12 first-order
derivatives, we would have to compute (n/2)(n + 2) (n + 3))= 45
second-order derivatives and as many third-order derivatives.

In conclusion, let us consider the problem when the set
U does not coincide with the space of smooth functions, and we
will assume that

U= {u: a< u b, a b) }.

is given. In this case, with reference to property (3), the
optimal control at each step is defined as u_, if Eq. (14)

yields u'_1EU( , and u.L* = u:mrrin--u;-i1 , if U.

The method of independent actions. Let us examine a system
of n material points with masses mi (i = 1, 2, ... , n). For an
arbitrary instant of time to, let us assume that their positions
rio and velocities vi0 are known with respect to some inertial

rectangular coordinate system Oxyz. It is required to determine
the parameters of the motion of each material point of the
system at an arbitrary instant of time t from known initial
conditions.

The equations of motion of each j-th point (j = 1, 2, ... , n)
considered in the system in the selected coordinate system are
of the form: n

(16) /29rii - r , i, r-= 1, 2, .... n,
kt = fmi, /

where f is the gravitational constant.

Let us define the trajectory of motion of the j-th point over
some time interval Ct,i t + At) with a hodograph, which describes
the linear combination of radii-vectors of the instantaneous
positions of this point on trajectories defined by the equations:
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(p i = - k- - ,Pi
(17)

Pji = () - (,), j.

Here, at the time ts of the beginning of the s-th step of the
computation, the following conditions are satisfied:

r1 (i, ()Ii L r (t) = rj,,

(vi)1 i = vi (ts) = is, (v0)i , = vr (t) = vis,

where ( ()i' (V)i' (P i)j and (vi)j are the instantaneous values

of the radii-vectors and velocities of the j-th and i-th points,
respectively, in the selected coordinate system when they are
in isolated interaction.

We will select the computation step Ats from the condition
that the inequality

r ,- (pi), 1, < I - ., i- .
is satisfied.-

This enables us, with reference to (17), to write the
equation of motion of the j-th point of the system as a computa-
tion step in the form:

r i== k (18)

The solution of Eq. (18) is of the form:

ri (pi;), (n - 2) Iris + vs ( - t)], (19)
i=l
ili

- = Y (~k) - ( -2) vis, (20)(2= 0)

ts < ts + At.

The parameters (.)i are defined from the final relations of

th' theory of Keplerian orbits: [1].
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The method of fictitious , masses. The formulation of the
problem is analogous to the foregoing. Let us imagine the
desired motion of the point mj as occurring under the influence
of one attracting point with fictitious ,variable mass Mj. We
define the position of the point Mi in the, selected coordinate
system by the vector Rj (Fig. 1), and the position of the point

mj relative to M. -- by the vector

riR(21)

We can write the equation
of motion of the point mi
relative to Mj as the equation

Sm, of a two-body problem:

S. Mi + mi -_ ,

/' 

n Considering that:

o c \, Ipi = ri + RjI

z we get /30

s - Mi+mi-rl1 = R1-f Pi. (23)
Fig. 1. System of n material P
points with fictitious mass.

Combined examination of Eqs. (16)
and (23) leads to the relation:

S i + m i 
-

i Pi, k1r. (24)

Parameters M and Rj are functions of k i and rji, however at the

computation step At s they can be regarded as constant, by setting
p. as the variable. Then Eqs. C23) and (24) are reduced to,
rispectively:

Mi+ -(25)
rI = Pi = - pi (25)

n -

M - m ---i (26)
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Let us define Mj and Rj. Denoting:

n -

J=1 .it

based on (21) and (26) we get:

- M i+ mi 2I Bi B (27)

To find M-, let us use the conditions defined by the
continuity of ihe gravitational potential. These conditions
are analogous to the conditions for the constrained three-body
problem (10) and are of the form:

1) M = mi when rji = 0;

2) aM/r.i = 0 when rji = 0, i j

2 2 rii=rk(--- -
3) D rM j /r 2i= 0 when ri 1 r;- 5 r s.a

k= 1, 2, ..., n; i=I-k; m t .

where ri s.a is the radius of the sphere of action of point mi

relative to the point m , which is the main attracting center
for m-. For example, for the actual system Sun (ml), Earth (m2 ),Moon tm3), and SC (m4), condition 3 can be represented as:

3 ') = Owhen r42=r 4 lt )r s.a
42

3" -= Owhen r7= r 42 -,( r3s. a
43 M2

where in the case 3', in determining the radius of the Earth's

(m2 ) sphere of action, the principal attracting center is the
Sun (ml), and in the case 3", in determining the radius of
the sphere of action of the Moon (m3 ), the Earth is the main
attracting center.

The relation for Mj, which in the general case is of the form:
n

i=1
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satisfies conditions )) and 2), where p and q are positive /31
integers satisfying the inequalities

p > 0, q > 1 (29)

To satisfy condition 3), by virtue of Eq. (28), the
following relation must obtain:

qp--1
r m'= , 2, ... , n; j 1

I -I 1, 2(30)

Considering that in actual problems, the sphere of action of
point mi is defined in the gravitational field of one principal
attracting center mk >> mi, without allowing for the small per-
turbations of actions of the remaining system points, we can
write relation (30) as:

1 p-1

( )q+T -Jk )ik. (31)

Relation (31) satisfies condition 3) for:

(._ \) = 1, (32)

_ L (33)
q

Based on (29) and (33), the values of q must be multiples of 5,
and (32) is satisfied as q -+ -. When q = 5 or q = 10, the error
of computation based on formula (31) is the limits at which
condition 3) is satisfied, equal to 0.08 and 0.02, respectively.
As shown by experiment, for the values p = 3 and q = 5, a
high precision of calculation can be achieved.

Optimal algorithm for the stabilization of the motion of an
artificial satellite in orbit. As the criterion of optimality,
let us examine the functional

ti.

I= S lul dt,

equivalent to the energy expenditure in control.
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If the motion of the artificial satellite of a planet (ASP)
is defined by system 1, where the control u appears linearly,
then with reference to the constraints:

1- U2_'0, (34)
a2 - < 0 (35)

the problem can be solved by using the constrained principle of
the maximum [4]. In this formulation, this problem is a generaliza-
tion of the known solutions [4, 51, since here instead of the
constraints on control (34), we consider the requirements imposed
on the precision of control (35).

In this case, application of the mathematical apparatus of
the constrained principle of the maximum is simplified, since the
optimal trajectories only touch the boundaries of the domain
(35) of the admissible changes in phase coordinates. Thus, to
the necessary conditions of the principle of the maximum [51 are
added only the conditions of discontinuity at the point of
tangency for conjugate variables.

Bearing in mind that the ASP is acted on by perturbing
moments, which by their nature of change are either close to a
constant, or else proportional to the phase coordinate, it is
precisely these two types of moments that have been examined
as the right sides of the system.

The following results were obtained. The optimal algorithm
of stabilization for ASP is a piecewise-constant function; the
optimal phase trajectories are piecewise-smooth functions and
form convex closed domains. The nodal points at these-trajec- /32
tories correspond to the points of control surface switching.

Figure 2 is a phase portrait of the optimal trajectory for
the case when a moment of the form M = Alx + A2 acts on the ASP,
where Al > 0 and A2 > 0.

The phase plane is divided into two domains: 1l and 02"
The domain 1l lies to the right of the curve ABCDE. If the
phase coordinates of the ASP lie in this domain, the control
must be switched on and u = -1. The domain 02 lies to the left
of the curve ABCDE. The initial position of the ASP corresponds
to this domain, the control is absent, and u = 0. The curve
ABCDE is the switching line.

The resulting algorithm of the stabilization of an ASP
that is optimal for the case when perturbing moments of these
kinds act on the satellite can be used also in setting up the
stabilization algorithms for more complicated kinds of per-
turbing moments.
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Problems of optimal control with
functionals dependent 'on intermediate

Svalues of coordinates. In the

classical formulation, these varia-
Stional problems were first presented

in the studies [7, 8]. Their
application to the solution of varia-

"- tional problems of descent into a
planetary atmosphere led to the

E necessity of analyzing complex
multidimensional boundary value

optimal trajectorty. problems that are not amenable to
the analysis being examined here.
This complexity was caused by the
nonlinearities of the differential

equations of motion of the ASP and by the use therein of functions
of the aerodynamic characteristics of the ASP that cannot be
analytically represented.

Analysis of problems of this type was carried out for
simplified equations of motion of an ASP. It was assumed that
the planet is a sphere with a Newtonian central potential; the
atmospheric density is an exponential function of altitude; the
extent of the descent trajectory is small compared with the
planetary radius; and the aerodynamic characteristics are constant.
The system of equations of motion of the ASP was reduced to the
form:

ui
dp - - -(

dz I w (36)
p BR pl'i- -

dp iPI p -w" ---

dt 1 1

d p ER p /v(1 - w2)

where p is the density of the planetary atmosphere; K 1 and K2 are
the aerodynamic coefficients; R is the mean planetary radius; is
the acceleration due to the force of gravity; v, w, u, X, c, and t
define three coordinates of the ASP center of mass and three
components of the velocity vector of the center of mass in the
coordinate system associated with the planet and with its
origin at the center of attraction. The controls ul and u2 are
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2 2
associated by the relation ul + u2 = . The functional being
optimized for these problems is represented as: /33

I f (PI, V, -..., ti), (37)

where the parameters v1 , ... t1 correspond to the intermediate
value pl (which in the general case can be determined).

Analysis of the system (36) in several cases makes it
possible for a specific form of functional (37) to obtain an
approximate analytic solution of the optimal problem and to
investigate its main features.

As an example, let us consider the motion of an ASP in the
vertical plane; we will select the control from the condition of
the minimum

Po

where pl is an assigned quantity in the interval ]p - Pk . The

equations of motion in this case will be of the form:

dt 1

dv

We will seek the solution for the following initial and final
conditions:

v (pO) = C1, W (Po) = C2
X (o) = C3, IX ) = C5, t ( ) = CL ,,

where Cl, C2, C3, C4 , and C5 are constants.

From the necessary conditions of optimality [71 we get the
result that the optimal law of variation of control is the
piecewise-constant function:

ul = signp
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where the function p continuous over 1p0 - Pkl and equal to zero

at the endpoint is defined from the solution to the differential
equation:

d$ dX
= -- (1 - h) /w (1 - w) on 1P0 - PI],

tip dp
-p - T (1 - w )  on [p, + P,

X = const.

Analysis of this equation shows that there is only one
point of a change in the sign of the function p and, therefore,
control ul has one switching point. We note that for the
resulting control the first three equations of system (38) are
integrated to completion, and the last -- in quadratures.
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USE OF THE FINITE-ROTATION VECTOR IN ONBOARD
DIGITAL COMPUTERS FOR DETERMINING SPACECRAFT ORIENTATION

A.P. Panov

The problem of determining the orientation of spacecraft (SC)
relative to inertial space using digital onboard computers (DOC)
is one of the most specific problems solved on board a SC with
integrating rate transducers hard-mounted on the SC body [1].

The specific details of the problem include the fact that
the primary integrated information on the SC attitude does not
permit the use of ordinary mathematical methods for the numerical
integration of differential equations of the SC attitude and
requires the use in the DOC of special algorithms. This specific
feature is aggravated by the fact that the algorithms used for
these purposes must ensure the determination of the SC orientation
with a minimum volume of computations and occupy a minimum
volume in the DOC storage.

There are several computational algorithms for determining
the orientation of a SC using the three Eulerian angles, the
four Rodrig-Hamilton parameters (RH) -- quaternions, the four
Keill-Klein parameters, and the four direction cosines [2-5].
Here the highest preference [4-8] is given to the use in the DOC
of algorithms for computing the parameters RH, since they require
the smallest volume of computations for realization.

The orientation of the SC can also be determined by using
the finite-rotation vector. Use of the finite-rotation vector
in the DOC instead of the RH parameters reduces the volume of
computations by 30%, since in this case it is sufficient to
compute only three parameters -- the projections of the finte-
rotation vector.

As we know from the theory of finite rotations of a solid
[9], the finite-rotation vector has the direction of the unit
vector of the axis of rotation e, equal in magnitude to the
doubled tangent of half the angle of rotation X and is of the form:

&= 2etg 2. (1)

The vector e uniquely determines the position of the body
relative to a fixed (inertial) coordinate system, and from its
projections onto the axes of the trihedron Oxyz fixed to the
rotating body we can find the direction cosines.
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Actually, between the projections of the finite-rotation
vector and the RH parameters [9] there is a relationship, which
can be written in matrical form as:

2

, 1(2)

where O,
= (3) /35

-( [1] (4)

ho = ]/ -( 4f + , + X2). (5)

On the other hand, the matrix of the direction cosines

Elxx Ixy lZ
Il.x Iy z, (6)
lzx ZYv lzZJ

characterizing the orientation of the trihedron Oxyz relative to
the inertial trihedron O1XYZ can be expressed also in terms of
the parameters RH:

+ - -., 2 (X.o, + . y), 2 (- X O. + x.,.),

L = 2 o + X&x), X o + X _ '-- , 2 (X0 -+ ~,~L), • (7)

L 2 (+ + , 2 (- X - X), + X2 _ - _ -

The joint solution of (2) and (7) is the matrix L in terms of
the projections of the finite-rotation vector:.

L = hoP,
S(8)

where % = I
1 + (02 + 2 + O )

- o+ 2- fy 1 + 1(2 + o,2 f2), 15+ 0T 15,
p1 -(

S+ ( 2, - + (10)
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To compute matrix (7), it is required to perform ten multiplication
and 21 operations of the addition and shift type in the DOC, and
the computation of matrix (10) together with (9) can be carried
out by performing six multiplication operations, one division
operation, and 29 operations of the addition and shift type.
Computation of matrix L based on (8) requires the additional
performance of nine multiplication operations. We note that
the matrix L is required generally for the linear transformation
of vectors, for example, for computing the projections of the
vector of the apparent velocity onto the axes of the inert'ial
coordinate system:

W= Lw, (11)

where w is the matrix-column consisting of the projections of
the apparent velocity on the fixed axes:

w= w , (12)

and LT is the transposed matrix L.

In this case, the operations in the separate computation of /36
(8) and (10) need not be carried out, but computations using
the formula:

W = X (P Tw), (13)

can be performed at once, and because of this, to solve the
part of the problem associated with determining the orientation,
it is sufficient to perform nine multiplications, one division,
and 29 operations of the addition and shift type.

As we can see, from the standpoint of the volume of computa-
tions required in solving linear programming problems in the DOC,
the parameters RH and the projections of the finite-rotation
vector are approximately equivalent. To solve the problem of
determining the direction cosines of the axis of the SC finite
rotation providing the alignment of the fixed axes of the SC
with the coordinate system specified in inertial space, the
parameters RH and the projections of the finite-rotation vector
are also equivalent, since:

2~- 5 (14)
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The preference for using the vector representation of the SC
orientation in the DOC compared with the parameters RH is
manifested only after constructing algorithms for computing the
projections of the finite-rotation vebtor.

Suppose that from the primary data integrating transducers
information on the SC angular motion arrives at the DOC in
discrete form:

10.1 t l+H

e, h (15)

where w is the matrix-column consisting of the projections of
the vector of the absolute angular rate of rotation of the SC
onto the axes of the fixed trihedron:

o=IIE J ,(16)

H is the time step of discretization, and th is the arbitrary
instant of time, where Oi << 1 (i = x, y, z).

Since the primary data (15) does not reflect the nature of
motion of the SC within the time interval H, we will assume that
it was obtained during one small finite rotation, which is the
resultant of all rotations made by the SC in actuality during
the time H. We can show that given this assumption, the
information (15) will reflect this small resultant rotation
with an error that can reach a value of the order of O(H 3 )
or O(e3), owing to the noncommutativity of the finite-rotation
components [5, 9].

Then the projections of the vector of the small finite
rotation AT can be represented in terms of the information (15)
as:

a=, tg 0, (17)
where

+ I/- e+ _6, (18)
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whence, after expanding tg- X/ 2 in a power series, we get, with
the error (1/4)X2e:

AS = e (19)

We denote the matrix of the projections of the finite-rotation /37
vector determining the SC orientation at the beginning of step H
by:

- (20)

According to the rule of addition of finite rotations,,,[9], we
obtain an algorithm for computing the projections of the vector
of the rotation that is the resultant of the rotations 0 h and AO:

-- /,;.-- (21)

Here eT is the transposed matrix G, and 0 is the skew-symmetric
matrix, of the form:

_-. , , • (22)

Here we note that the error of algorithm (21) is wholly defined
by the error of equality (19) and by the error of the non-
commutativity of the information (15).

For a DOC not performing operations of division, from (21)
we can get algorithms of any order of precision. Replacing the
fractional part in (21) by a power series, for example, we get
the first-order algorithm:

4=(i +--eh( -- -e (23)

with the estimate of the error in the step:
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the second-order algorithm:

+T - +e-y ,/ i+E1(25)

with the estimate of the error for the step:

6 4= 1- ('0,,) ', )) +0(H 3). (26)

we can easily also form algorithms of the third and higher orders
of precision, however they require that we obtain primary infor-
mation not containing the noncommutativity error.

In scalar notation, algorithms (23) and (25) are of the
form, respectively:

S= (1+ k) x,., + O - (84 - (x, y, (27)S,(27)
, = (1+ k + k2) .,i, + E, - - .- - 0B ,,) (x, Y, z), (28)

where k =- (e0xa, ( . r324,.);

(x, y, z) is the symbol of cyclic permutation.

For comparison, let us write the algorithms for computing
the parameters RH [51:

first-order algorithm

, = x,,,, + - (Ox)o0 , + 0 izh) (29)

- - (OOhj + e;.. X,)..h) (X, y, z);

second-order algorithm /38

Xx= ( E e)2 ,xh - (x2'Oh + 2%,h - O,),h),
1 

(30)

)= 1)0, - 2 (Ox,h + y LX,h ± O,2 X,h) (x, y, z),

where eO= .+e + e.

As we can see, the first-order algorithms (27) and (29), from
the standpoint of the required volume of computations, are
equivalent, however algorithm;:(27) yields an economy in the DOC
storage used.
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Use of algorithm (28) instead of algorithm (30) provides,
when carried out in the DOC, besides the advantage in the
volume of the required storage, also a savings in the volume
of computations, saving six operations of multiplication and
six operations of the addition or shift type in each step,
which is 30% of the total volume of computations using algorithm (30).
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OPERATING ECONOMY OF SPACECRAFT STABILIZATION SYSTEMS

N.F. Gerasyuta, Yu.D. Sheptun, and S.V.,,Yaroshevich

Natural oscillations of spacecraft outside the atmosphere
when acted on by a constant perturbing moment have been examined
by E.V. Gaushus [1, 2]. It is assumed that the orientation of
spacecraft is performed with a relay system, whose actuators
produce impulses of controlling moments that are equal in
magnitude.

Actual motion must differ from that considered above owing
to the inequality of the control impulses, which can be due to
the imprecision of the manufacture of actuators or provided for
deliberately.

The inequality of the impulses of controlling moments can
be expressed mathematically by writing dimensionless equations
of motion as follows:

(P = x ± L,1

-- 1i for j> 1; j>m and dj< 0,

== 0 for lil<m; 1>il>m and -di> 0 ,

1+62 for <--1i -- and di /
i = Tp , 6 , 7- 6.,

Here C and K are the controlled and controlling parameters; L is /39
the coefficient of the perturbing moment; and T and m are the
controller parameters.

The equation of the phase trajectory of a spacecraft is
of the form:

(' - (op = 2 (X + L) (, - (Po).

The phase trajectory in the plane (4, $) is shown in Fig. 1.
The changes in the angular velocity of the craft when actuators

are switched on are characterized by the quantities "1= (f, ,

and 02 i+3 If 61 .62, then 1 W 2 , and Aw =0

;4ow '2 1: W 0.

Let us review the oscillational motions of the system and
examine the possible method of reducing the amount of energy
expended by the actuators of the system during regulation for
the case when there is no perturbing moment (L = 0).
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0,i Suppose w2 
> W and b2 - l = Aw., Let us limit ourselves

to the case when Aw < wl. The phase trajectory of the possible
motions of the system is shown in Fig. 2. Let us call the motions
characterized by the trajectory sections 123 and 34567 the single-
impulse and double-impulse cycles, respectively. Let us select
as the segment without contact the segmeritodf,.the line of the
inclusion MM, for whose points the condition

O<V<02 , V = 4. (1)

is satisfied.

• !Let us construct the point
transformation of segment (1) into
itself. The transformation is

-st I 1 defined by the recursion function

K'2 \"" av)=V-l-h for V<°1 ,

f(V) (V) = V -Ao) for V>w.1
Fig. 1. Example of phase
trajectory of perturbing The transformations defined
motion (L $ 0). by the recursion functions a(V)

(corresponding to the double-
impulse cycle) and B(V) (cor-
responding to the single-impulse
cycle) are denoted by T. and T .
The form of the recursion
functions a(V) and (V) is

N _ ,shown in Fig. 3; a(V) and B(V) are
straight lines parallel to the

Sbisector of the right angle, and
2'j therefore the simple transforma-

tions Ta and Tg dO not have fixed
/ , pints. The fixed points are

possible in complex n-multiple
transformations of the form

i, n = T- 1 T , with the recursion

", formula:

. ..\ (V) = a,,_ [3 (V)t = V + (n - 1)o -1 A ,

n = 2, 3, ... ,

Fig. 2. Phase trajectory of
the motion of a spacecraft
when L = 0, Aw Z 0. /AW= n- i. (2)
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Any point of the segment Cl) (the coordinates of the fixed points
are random in nature) is a fixed point..

When condition (2) is satisfied, the control system performs
a natural-oscillatory motion; during the period of the natural
oscillations one single-impulse and (n - 1) double-impulse cycles
occur. The ordinate of the initial point of the first double- /40
impulse cycle following the single-impulse cycle will always
satisfy the condition 0 < VO < Aw. In the general case, the
function fA(V) describes the mapping of a circle into itself,
induced by the rotation of each point of the circle by the same
angle. Therefore, to each rational wl/Aw there corresponds the
corresponding fixed points of this mapping of the corresponding
multiples, that is, closed phase trajectories of different
complexities, and corresponding to the irrational wl/Am, there
correspond the closed invariant trajectories.

The ordinate V0 continuously changes in the range 0 < V0 < Aw;
during the control process, motions are induced that are charac-
terized by the transformations H = Tn-1T H TnT. We can

n a 6 n+l e
show a Vr = UAw such that when V0 < Vr, the transformation H n+l
occurs, and when V0 > V -- the transformation Hn occurs.

The duration of the sequence
/ /7 m - 1 (m = n + 1 or m = n) of

cv! ,/double-impulse cycles and one
single-impulse cycle is defined
by the sum:

/," T . -o, T T 2A- oT

i-i1 i=l/ I

where to(t i ) is the duration of

the single-impulse (double-impulse)
cycle, respectively.

Fig. 3. The Koenigs-Lamereaux The duration of the sequence
plot (L = 0). of cycles tE depends essentially

on the ordinate of the initial
point of the first cycle. This

function, plotted for the values of the parameters w2 = 2, wl =

= 1.63, T = 0.3, and A = 1 is illustrated by Fig. 4.

Let us compare the amount of energy expended by the
actuators when wl = w2 and wl # w2- We know [2] that for an
I = w2 and V0 = wl/2, we have the largest number of on-switchings

of the actuators and the largest energy outlay over the final
time interval. This case, as a rule, is used as the calculation
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9 0 case when determining the
required energy reserve.
For comparison, let us

60 Kiexamine the ratio q = Q/Qc,
where Q and Qc are the energy

ioutlays during the time T
for w $' w2 , and l = 2 = w,
respectively. In determining

I Qc, we will assume that w =
= inf (wlw 2 ) and that the

Saf al : v, natural oscillations of the
system are symmetrical.

Fig. 4. Dependence of the duraT'
tion of the series of cycles The values of q correspond-
tE on the ordinate of the initial ing to the different values of
point. Aw and calculated for wl = 1.67,

T = 0.3, w2 = l + Aw, and
T = 10, are presented below:

AW 5% (o)J 10% w1  15% wt
q 0.36 0.42 0.22

The quantity V0 was selected for each Aw by using the plot /41
tg = ta(V0 ) so that during the flight time T the sequence consist-
ing of (m - 1) double-impulse and one singlei-impulse cycles
occurred, whose duration was a minimum, t = tE min . The time
T = 810 corresponded to t 4 5400 sec (the time of one revolution
of the satellite around the Earth). For the selected wl and w2,during the time T = 810, 100 - 150 engagements of the actuators
occurs; 20-30 series of cycles with the duration tE = tE(VO) are
observed. Therefore, when Aw # 0, the energy outlays are
appreciably less than in the case Aw = 0.

Let us examine the motion and estimate the energy consumption
for stabilization of the spacecraft when acted on by a perturbing
moment. Following the work [1], we will conduct the analysis of
motion in the phase plane (U,x) where U = T$ + $; x = 4 + LT.
Then the equation of the phase trajectory can be written as
x2 - x2 = 2 (K + L)(U - UO). The phase trajectory is shown in
Fig. 5.

Selecting as the segment without contact the line

U=" 1 - T; -T;2--.LT<x < T2-LT,

we get the following equations for the recursion function:
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e(x) - + 2L.JiT- oi for x>- I/E-,
:n" i f l(X)= 

v (x)= ~/ - E'1E+ ., - wo for x <- ' 1 ,
E= 2L (2 - owT), E, = 2L.(2-- o,T).

(3)

Fig. 5. Example of phase The transformations defined by
trajectory of the motion the functions E(x), y(y), will be
of a spacecraft in the denoted by To and Ty, respectively.
plane (U,x),(L # 0. We will conduct our analysis for

the fixed value wl > 2(2/L - LT),
for which the function O(x) has
no fixed point (the spacecraft
oscillations are produced by
engaging both actuators).

Let us examine the effect of
the parameter Aw on the nature of

8/ the motion, by varying w2 in the
range 0 < w2 < (2/T). Suppose
w2 >>: -wl Then the following
motions are possible, corresponding
to the point transformations

1 i. 7i-"IyT . (m = 1, 2, 3,...) with

the recursion functions 4m o. 2... _'i { ,~.
Fig. 6. Koenigs-Lamereaux
plot for the point trans- The diagram of the transforma-
formation Hm (L 3 0). tion ffm is in Fig. 3. With

decrease in w2, the transformation
1 m successively changes into the transformations _l, m-2, ...,'

m- = Tm-2 T (Z = 1, 2, ... , m - 2). If £ = m - 2, we have

H2 = TTy , which with further increase in w2 changes into the

transformations

For some value w2, the multiple fixed point of the simple /42
transformation y(x) is produced. The function y(x) corresponding
to the moment at which the fixed point appears is shown in Fig. 6
with a dashed line.

The equation of the bifurcation curve w2 = w2 (L) can be
obtained by solving the system of equations:

y(C)-C = 0,
dx c= 1.
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In the following, the multiple fixed point splits into
two (larger and smaller); the larger fixed point disappears when
the equality y[-I ] = - , from whence:

0)2= LT + L2T +(- 4L

The coordinate CM of the second fixed point decreases to
the value

CM = - 1. (4)

If ~ 2- , where w is the value for which equality (4)

is satisfied, the transformation Ty is impossible; motion
commences, whose phase trajectory is illustrated by Fig. 7.
Analysis of this motion is conveniently done by adopting as
the segment without contact the line

U=--1+0 2T,' VE-mr gX< (5)

The recursion formulas written with respect to the segment (5)
are analogous to the functions f(x) (3). Analysis of this point
transformation will not differ from the analysis of the trans-
formation Hm = Tm-lT . Therefore in the following we will limit

ourselves to considering the oscillations characterized by the
recursion functions f(x).

We will make the analysis
x] of the stability of the periodic

motions of the system. The.
stability of simple fixed
points of the transformation
TO according to the Koenigs
theorem follows from the fact

/ U_ that for any values of the
system parameters and any
values of x, the condition [3]

=dO x) - <1.
dx " JO x +2LcoT

Fig. 7. Example of the phase is satisfied.

trajectory of spacecraft motion, The multiple.fixed point

if W.</ Ic-E ' of the simple transformation T
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is semistablel since:

S d (x) = 1.

The larger fixed point al of this transformation is always
unstable CXy > 1). The value of Xy for the part a2 continuously
decreases with decrease in w2, and therefore, the point can
become unstable only when Xy < -1,

Let us find the Ny for the smallest coordinate of the
point a2:

dv -? - i/_/ 2  - - ~, . - () ) -
% dx

From the equations of the fixed point y(x) = x, we get: /43

-------------- -
-0 + [w, - (VE, - )2 E112 + E V - ,

S- (YE - )2 - El = 0,

whence Aylx=C = 0 and, therefore, the point a2 is always stable.

For the complex transformations Rm and H n the functions Am
and Xn are defined by the formulas [1]:

m-2
m = dfm dy [E (x)] -. dO [fi (x)]
^m f d d dx)

i=1

n--I
df, dO - d? ffi (x)]
dx dx dx

i=1

Here f (x) = yil-[(x)].;,.

Analysis shows that Xm and n take on extremal values when

x = CO, where CO is the coordinate of the fixed point corresponding
to the parameter w2 

= 0.

If w2 = 0, then yCx) degenerates into OCx) and, therefore,

de [F, (x)l.Xm x=C, = nx=c= d [F(
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Here F = i-l[ECx )]

Since !I. < 1 for any values of x, then lJmix=c,=X, nx=c.<1

This implies that with change in w2, the fixed points of the
transformations E m and 11n do not change their stability. Here
the larger fixed point is always unstable, and the smaller is
always stable.

Let us examine the change in the complex oscillations of
a spacecraft for the example of the transformation Jm . The

function f (x) is defined in the interval sup[-f (-vEl)],- E~j
-

x < inf[fm (-1E-),S, Swhere S can be found from the equation

E(S) = -E .

With decrease in w2, the structure of the phase trajectories
bringing about the transformation Hm changes. The instants of
change of structure (bifurcation moments) are defined by the
generalized equation:

eOK(r ((r)J}= R,
(6)

where K, r, and R take on the values m - 1, 0 and -vY'l at the
moment of inception of the transformation "m; m - 1, -E lj, and
-/El at the moment that the fixed point of the transformation Hm+l
disappears; m - 2, -xl and xl when the double fixed point appears,
from which subsequently the points al and a2 emerge (al > a2);
m - 2, S and S with the disappearance of the point a1 ; m - 2, 0,
and -VE l at the moment of the inception of the transformation Hm-l;m - 2, -V~E, and -/E~1 for the disappearance of the point a2 .

By solving Eq. (6) for the parameter w2 , we get the
generalized equation of the bifurcation curves:

0 = (M + L) + V(M + LT)2- N - M2 - 4L, (7)

where M = J[/ (r)]l- E, and N = e + OK (R).

The function 7(R) realizes a transformation that is the
inverse .of O(R). Using Eq. (7), we can plot bifurcation curves
w2 = w2 CL) that enable us to determine the nature of the oscillatory
motions of the spacecraft for assigned system parameters.

As an example, in Fig. 8 are shown the functions w2 = w2 (L) /414
calculated for the transformation 2 . The change of complex
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oscillations of other kinds occurs analogously. An exception
is represented by the oscillations corresponding to transforma-
tions T-,.

The value of the function fn(x) at the moment of inception
depends on w2 and varies with change in w2. The function fn(x)
is defined for the values of x belonging to the interval:

sup [- fi, (- 1), - I x < inf[f,i (-1 E), S.

If 0n > 0, then with decrease in w2 the multiple point of

transformation fn is formed, which divides into two fixed points
al and a2 (larger and smaller). The later fixed point disappears
when the condition al = inf[fnl(--1 ), ¢] is satisfied, which is

equivalent to the condition of the simultaneous observance of the
equalities fn(al) - a1 = 0 and fnl(al) + /E = 0. Cancelling out

al, we get fn-~1 y(- E-)] = - E 1 or fn( ) = , where n = Y(-/E)'

If n < 0, then
GW, there is no multiple

and larger fixed points
in the transformation Hn -

J I l The smaller fixed point
- is initiated at the

_4 instant BY when the

satisfied.

Using the Koenigs-
Lamereaux plot and the

0 4generalized equation
0.1 0.2 (6), we can establish

the sequence of the

Fig.' 8. Bifurcation curves of the point occurrence of the bi-

transformation 2 : furcation instants,
1. Function w2 (Li for the moment of in- by showing that this

ception of the transformation R2 sequence depends on n-
= TyTb; 2. as above, for the moment of the
the disappearance of the fixed point of If n > e1,,the
the transformation T13 =TyT ;,3. as disappearance of the

smaller fixed point of
above for the moment of the appearance the transformation
of the fixed points of the transforma- Tn-1 occurs earlier than
tion 112 ; 4. moment o.f inception of the the appearance of the
transformation 113 = T2T; 5. moment of the a ppearance of the
the disappearance of he transformation mul tipe fixed point of
E2- the transformation H,.
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If n < /E, then the disappearance of the smaller fixed point of

the transformation Nn-1 is preceded by the appearance of the

multiple fixed point and by the disappearance of the larger fixed
point of the transformation HIn. In the latter case, the existence,
for the same value of w2 , of fixed points of two neighboring
transformations En and In-1 is possible.

Let us examine the dependence of the energy expenditure in
the orientation of the spacecraft on the difference A = wl - w2;we conduct our analysis for the point transformations of the
type Rn, assuming L > 0.

In the periodic motions corresponding to the fixed points
of the transformations Hn = T Tn-l, the number of engagements

of the actuators producing negative control impulses is one greater
than the number of engagements of the actuators producing positive
control pulses. Hence there follows the formula for determining
the period of natural oscillations:

Ta = 77 [') + ( - 1) ,(8)

where n is the cycle multiplicity.

We will assume that the energy outlay in a single engagement
is ql = rwl, and q2 = rw 2 (r is the coefficient of proportionality).
Then the energy outlay during the flight time t (t >> Ta) will be
defined by the formula:

Q ( i 
(n - 1) ~] f

Q Ta

With reference to relation (8), we get: /45

Q = r [n , 1(n - 1) (,) /L
oh+ (n-I)A

If w1 = w2 , then Q = Q0 = r(2n 0 - 1)tL, where no is the cycle
multiplicity when wl w2 . Then the relative energy outlay will be:

0 n -L ti- 1) (,).

= go [ - - 1) j (2n, - 1)

Figure 9 shows the dependence of the relative outlay on the
parameter w2 Cw = const). The function Q(w 2 ) is discontinuous
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for the values w2 corresponding to the transition of oscillatory
motions from one type to another (from the transformation Rn to
the transformation Inl ) . Here the number n and the outlay change

in jumplike fashion.

T

Fig. 9. Plot of relative energy expenditure:
1. Function Q(w2) for the transformationT ;
2. as above, for the transformation R4 = To;

3. as above, for the transformation 3 = T T
4. as above, for the transformation n2 = TT 0"

The function Q(w2) is calculated for the value wl = 2, L =
=~const > 0. Therefore point A (see Fig. 9) characterizes the
relative expenditure if the actuators produce upon engagement
the same control impulses; the number of engagements in the closed
cycle when wl = W2 = 2 will be no = 7, and the relative expenditure
S= 1. The variaion with time of the spacecraft angular coordinate

= (t) is shown in Fig. 10 a.

If a2 = 1 and 2, then as follows from Fig. 9, the oscillations
are characterized by the simple transformation Ty; the phase
trajectory closes in tw o engagements of the actuators. The
relative expenditure is much smaller than in the case 2 = 2
(Q = 0.6). The plot of the variation in the angular coordinate /46
for w2 = 1 and 2 is shown in Fig. 10 b.

This analysis affords the following conclusions.

1. When the dynamics of the spacecraft outside the atmosphere
is analyzed, it is useful to allow for the inequality of the
impulses of the control moments (Aw # 0) produced by different
actuators of the control system.
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o 2. If the perturbing
moment is absent and Aw $ 0

- - - - is ensured, simple natural
- -o oscillations are impossible

O 40 b c ? in -- alternation of open
double-impulse cycles with
one single-impulse cycle

0.5 occurs. Complex natural

if the difference of the
-0.5- control impulses is a multiple
-. 0 of the magnitude of a single

0 40 : i ;u t impulse. Control systems in
a which the control impulses are

not equal to each other are
Fig. 10. Plot of the variation somewhat more economical
with time of the spacecraft (by a factor of 1.5 and
angular coordinate higher) than systems with
a. w2 = 1l = 2 equal impulses.
b. W2 = 1, 2.

3. For the case of the
action of a perturbing moment and Aw $ 0, establishment of both
simple and complex natural oscillations is possible. The
appropriate selection of Aw minimizes the amount of energy :
expended -- the energy outlays in spacecraft orientation can be
reduced by\ 1.5-2 times.

68



REFERENCES

1. Gaushus, E.V., Avtonmatika i telenriekhanika 9/10 C1968).

2. Gaushus, E.V., in the book: Iskusstvenniye sputhiki Zemli
[Artificial Earth satellites7,. Vol. 16, USSR Academy of
Sciences Press, Moscow, 1963.

3. Andronov, A.A., A.A. Vutt, and S.E. Khaykin, Teoriya kolebaniy
[Theory of oscillations], Gostekhizdat, Moscow, 1954.

69



PROBLEMS OF OSCILLATIONS AND THE STABILITY OF MOTION
OF MULTIDIMENSIGNAL ELASTIC AND ELASTOFLUID CONTROLLED OBJECTS

A.I. Kukhtenko, V.V. Udilov, and B.A. Gudymenko

Allowing for the elasticity of a structure and the oscilla-
tions of a fluid in the cavities of a flight craft leads to
various problems in the analysis of oscillations and the stability
of motion becoming essentially multidimensional. Let us examine
the possibility of using methods from the theory of the repre-
sentations of groups and the method of decomposition in solving
problems of the control of the motion of elastofluid objects.

Application of the theory of group representations in solving
problems in the stabilization of elastic spacecraft. The theory
of linear representations of groups can prove of much assistance
in the study of multidimensional elastic space objects [1]. The
methods of the theory of linear representations of groups prove
applicable in those cases when the dynamic system under analysis
is symmetric. Here, by system symmetry we mean the invariance
of its mathematical model relative to a specific group of linear
transformations. Orbital space stations(, of the type described in
the work [2], as well as cluster type flight craft [31 can be
classified as symmetric space objects. Solving a number of
problems (analysis of the frequency spectrum, of the stability
of motion, and of optimality) associated with automatic control
of this class of objects is fraught with serious computational
difficulties brought about by the multidimensionality of these
problems. However, the presence of the properties of symmetry
of the system under study enables us to reduce the initial multi-
dimensional problem to a series of problems of much smaller dimen-
sionality, although to solve the latter, if they still prove to be
multidimensional, we have to seek other ways of overcoming the
"curse of multidimensionality." One such approach, known by the
designation method of decomposition, is described in the second
part of this article.

Realization of the decomposition of problems emerging in /47
the analysis of symmetric dynamical systems can be achieved by
different methods, based on the theory of the linear representa-
tions of groups. One such method (the "elementary cell" method)
as applied to the analysis of frequency equations of complex
rod systems has been described in the work [4]. Essentially, the
method consists of isolating in the initial rod system its smallest
part, which when acted on by different elements of the symmetry
group the entire system can be "constructed." For the elementary
cell thus isolated, additional coupling equations are sought and
frequency equations are set up by known methods. The fullest
description of the elementary cell method is to be found in
the work 51].
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Another approach to achieving the decomposition of linear
ordinary differential equations, quadratic forms, and boundary
value problems corresponding to the natural oscillations of
complex rod systems, based on the method of projection,-ioperators
known from the theory of linear representations of groups, is
developed 'in the-works ,-6- [101.

In order to actually demonstrate
the method of allowing for the
symmetry properties and to recognize
all that can be achieved by apply-

I ing group t1eory, let us examine
the supporting rod system of an

F , F orbital space station (Fig. 1).
The system for stabilizing the
toroidal space station is examined
in the work [2]. Our consideration
includes the analysis of the sym-
metry of the control object and

YZ F41 the structure of the equations of
its elastic oscillations, and also
finding all the simplifications
that can be achieved owing to the

Fig. 1. Configuration of a symmetry of the object, in the
station with the form of a problem of its automatic stabiliza-
regular hexagonal. tion.

Let us first consider the properties of the object's symmetry.
We will use the equations of motions of a deformable body in the
Lur'ye form for the mathematical description of the control
object [11].

Let us assume that the object of control (Fig. 1) consists
of six monotypical rods rigidly connected to each other, each of
which is given flexural rigidity in the plane xz and torsional
rigidity. Let us fix the axis s with the k-th rod, with the
origin of reference at the middle of the rod and oriented along
its axis of symmetry. We let a stand for rod length.

The formulation of the equations of motion of a deformable
body in the Lurtye form is based on the assignment to the
system of functions approximating the vector of elastic dis-
placements. In the selection of these functions, the properties
of the object's symmetry are also used.

The vertical displacement of the points of the elastic axis
and the angles of rotation of the sections relative to the s axis
of the k-th rod can be written as:

71



wk (s, t) = A, (s) w+ (t) + A2 (s) w - (t) + A3 (s) q+ (t) + A4 (s) P7 (), " (1)
Ok (s, t) = A. (s) 0- (t) + A,(s) O (t). (2)

The functions A£Cs) Ce = i, ..., 6) can always be selected so that
the following relations are satisfied:

Wk (S, t) s=-a/2 = W+ (1, Wk (s, t) 1 /2 = - (t),

Wk (S, ) + OW (S tS s=-a2 s /2 (3)

o (s, ( ) I=-,/2 = o (t), on (s, k t) ls=a = k (t) .

This can be achieved by interpolation by the beam functions or /48
by the Hermitian polynomials. In the latter case, the functions
Ak(s) are of the form:

A, (s) =2 1 "a 2 a A2(S)=2 1 - a a

A, (s) = s - ,A, (s) = s - + )

AB (s) = (1 - , A, (S) = a I

Let wk(t) stand for the vertical displacement of the k-th
assembly, pk(t) -- for the angle of rotation relative' to.the
radial direction, and qk(t) -- for the angle of rotation relative
to the tangential direction (Fig. 2). Then we have the relations:

Qk- P + - k+ Pk' Wk =WA,

k- qA+ + -- Pk+, (P - k+ + 2 Pa+l, w t (5)w

Using these relations, let us express the deflection function (1)
and the angles of torsion (2) in terms of the coordinates of
the assemblies:

W k (, t) = A1 (s) W k 4 A. (S)Wk+ + - (s) qk

2 A3 (s) PA + 2 A 4 (s) Pk+,

, (, ) A (s) + 3 (s + A(s) + (7)
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The functions C6) and C7) constructed in this way allow us to
satisfy the conditions of continuity of vertical displacements
and the angles of rotation of the assemblies relative to the
radial land tangential directions.

Let us convert from the
coordinates Pk, qk, and wk to66 other coordinates, called sym-
metric coordinates. These

a b coordinates can be constructed
by the method of projection
operators [1]. Use of sym-

lmetrical coordinates in the
expansions (6) and (7) leads to

S i a simplification of the equations
of motion of a deformable body.

%\Symmetric coordinates are close
4 to normal coordinates, and some

6 \ of them can even coincide with
the normal coordinates. Also

Fig. 2. System of coordinates important is the fact that
Fig. 2. System of coordinates
associated with the station. seeking for the symmetrical

coordinates is based on the
symmetry properties of the

system. Let us examine these properties in more detail.

The construction shown in Fig. 1 has six planes of symmetry
ak (k = 1, ... , 6), whose traces are shown in Fig. 2, and also
a tixth-order axis of symmetry, which coincides with the z axis.
The presence of the sixth-order symmetry axis implies that the
construction coincides with itself for rotations about its
axis by the angles Rk/3 (k = 1, ..., 6). These elements of
symmetry give rise to 12 operations: six rotations C (k = 1,

6) relative to the z axis, and six reflections 8k (k = 1, ..., 6).
The set of rotations C and reflections 8 forms the groupCg .
The unit of the group here will be rotation about the z axis by
0 or 3600. The order of this group is 12.

Now let us construct any unitary representation of the /49
group C6v. To do this, let us note that the functions Pk, qk,
and wk can be considered as the coordinates of the 18-dimensional
vector x in the basis of unit vectors:

e= (0 ... ... 0), e= (O ... 1 .. 0), e = (O ... 1 ... 0).
k 6k-12+k (8)

Thus, in the 18-dimensional vector space L we have the repre-
sentation of vector x in the form:
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x = , (pkeP + qkeq .wke). (9
k=1

Let us define in L the operators 6 and &k (k = i, ... , 6) as
fol'lows-:

CkeP = e+, Cq = e, Ckew = e'

oke = -eP a2 e = eqk+, e = ez +o .  (10)

In the expressions (10), we assume that

Relations (10) map the transformations of the basis unit vectors
(8) generated by the operations of the symmetry of groupCgv.^It is not difficult to verify that the set of operators C , kad k
forms the unitary representation of the group C6v in the basis
(8). Knowing the unitary representation of the group, and; Also
the tables of its nonreducible representations, which are pre-
sented, for example, in the work [1], we can expand the space L
into the direct sum of eight orthogonal subspaces:

L s~=eE (11)
c=1 V=1

and find the basis unit vectors {eaBy) (8 = 1, ..., ma) of each
of the subspaces Eay. Corresponding t'o the expansion (11) is
the representation of vector x in the basis eagy (a = 1, ... , q;
B = 1, ... , ma; y = 1, ..., sa), referred to as canonical:

Q m= s'

X' Z qw w e2o. (12)

The coordinates of vector x in the canonical basis are called
symmetric. The index a in the notation of the symmetric coordinates
corresponds to the number of one of the nonequivalent nonreducible
representations of which the given reducible representation consists;
the index R corresponds to the number of one of the equivalent
nonreducible representations of the a-th type; the index y cor-
responds to the number of the symmetric coordinates transformed
according to one of the representations of the a-th type. The
numbers ma Cmultiplicity of the nonreducible representation of the
a-th type and sa Cdimensionality of this representation) appearing
in expansions C11) and (12) can be found from the tables of non-
reducible representations and from the matrices of reducible
representation (10):
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nm = m2 = 3, m3 = m = 2, m = m = 1,(13)
s, = s = 2, =s 4 =s S = s = 1.

The data presented are sufficient to construct the formulas
for converting from symmetric coordinates qa y to,the initial
coordinates Pk, qk, and wk:

k 1 ( (k - 1) (k - 1) 2n (k - 1) "

P 1 , - qlm sin 3 + q112 Cos 3 -q2 sin 3

2a (k - 1) \
2 12 cos n ( , (q,,, cos 2n (k - 1) - q6  cos n (k - 1)),

aI ( rr(k - 1) (k - 1) 2n (k - 1)
qqk - 2  cos - - si n  3 q2. 1 cos 3

(14) /50
2t (k - 1) 1 

/5

q2 , 2sin %(k- I) a - (q1) cos 2n (k - 1) + q4, COS (k - I)),

S(r (k - ) (k - 1) 2a(k - 1)

Tk = (q131 cos -q1 sin 3 + q,,31 cos 3

2n (k3 S t (q321 COS 2 1 (k - 1) + q42 cos n (k - 1)).

Formulas (14) express the functions (6) and (7) in terms of
symmetric coordinates. In order for the function (6) thus obtained
to be used in describing elastic oscillations relative to the
coordinate system xyz (Fig. 3) associated with the structure as
a solid, this system must satisfy the conditions:

6 a/2

k a/m (s) w (s,t)ds = O,
k=: -a/2

6 a12 C a (k - 1) (k - 1))

k=l -a/2

m (s) w (s, () + s sin 3  ds = O.
k=1 -a/2

These conditions lead to three coupling equations between the
symmetric coordinates:

b1q,11 + b2q12 1 + b3q131 = 0,
biq1 12 + b 2q 122 + b,ql 3 2 = O, (16)
c1q 11 + C2q3 21 = 0,
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where the coefficients bl, b2 , b3 , cl , and c2 are expressed in
some fashion in terms of the integrals of the functions Aq(s)
(K i, 2, 3, 4). Thus, if we take the Hermitian polynomials
C4) as these functions and assume m(s) = const, then bl = 3a,
b2 =-4a, b3 =-51, c1 = a, c 2 = 12.

Expressing functions (6) and
Sz C?) in terms of symmetric coordi-

nates according to formulas (14)
N " and cancelling out the dependent

i coordinates q1 3 1, q1 3 2, and q3 2 1

Sfrom the resulting expressions on
the basis of Eqs. (16), we get:

w. (s, t)= V pk , (s) q y, (17)

Ok(s, t) = v , 1 p(s) \v

Fig. 3. Planes of symmetry a2=1 ==I
and numbering of rods and k = , .... 6; m, = 2, m2 = 3, m = 2 \(18)
assemblies. \m = m, ; s, = s2 = 2, s3 s=s4=S =S= /

Nonreducible representations of group C6v are also realized

with the functions PRv (s),' and ~v (s) (k= 1,..., 6) . This enables

us to classify the functions k (s) and k (s) by types inaBy ay
accordance with the nonreproducible representations of group C6v.
',k k
Thus, the functions 31 1 (s) and e3 1 1 (s) (k = 1, ..., 6) are

symmetric relative to all symmetry operations of group C6v; the

functions cP11 (s), , (s), O,, (s), , and 0421 (s) (k.-1,..., 6)1 are symmetric
.1 3 "5relative to the rotations Cg, Cg, and C6 , and the reflections

al, a3, and 5', and are antisymmetric relative to the remaining
k k

operations. The functions 4 (Cs) and05 1k (s) are symmetric /51511 511
relative to all rotations and antisymmetric relative to all

reiflectiona of group C6v-. The functions TvI,(s), and , ., (s)(k= ( ,

... ,6; 1, 2; 1,2); , when ac.ted on by the symmetry opera-
tions are transformed one into the other. This also applies to

the functions vp)~ /" and , 2 v( (k 11, ..., 6, = 1, 2, 3, ; = 1, 2)./
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Let us proceed to the direct setting up of the equations of
motion on the Lurye. form [11] .as applied to the object under
consideration.

Considering the method of reducing quadratic forms with
symmetric matrices given in the work [101, for the kinetic
energy of elastic oscillations we ihave the expression:

6 sa ma

T = T , Tmv= 2 1 Agqq,, (19)
a=1=1 ,l'=l

where -V a a
(A = yF 6 / 01 sa2 6 (s) (s) ds

v=l1 -k=al -a/2 (20)

Ip is the polar moment of inertia of the section of the k-th rod;
y is the density of the k-th rod; and F is the cross-sectional area.

The potential energy of the elastic oscillations is:

6 Sa mm

a = :c= z B='=1 (21)

where c,. = a-1 - a- O s' s ds
y=1 k=l -- a/2

a/2 a , _o , (s_ )
+ GI, a a (s a s ds (22)

-a /2

EIx is the flexural rigidity of the k-th rod, and GIp is the tor-
sional rigidity of the k,-th rod.

The potential energy of centrifugal forces in this case is
of the form:

6 Sa ma

v-' my 2 2 mG'qavq ,'v' (23)
a = y=1 0,'=1

where 6 a/2

Ma;B =s: ' yF s aso' d
p=1 k-I -a2 0 (24)

- VI o k e (s) Ok O, (s) ds)
a/2
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0 is the angular rate of rotation of the station relative to the
z axis, and IX is the equatorial moment of inertia of the section
of the k-th rod.

With reference to C19), (21), and (23), we obtain the
equations of the elastic oscillations of this control object
in the form:

m

[A +C (C' ,+ Q 2 m) q, = Qc'i

S6,, s; mI=2, (25)
m2 = 3, 3m, = 1, m = 2, .
M 5 m 6 =

Here Q.gy are the generalized applied forces.

In setting up this equation, we did not make allowance for /52
the effects associated with rotation of the rod sections relative
to the radial directions.

From (25) we see that the system of the corresponding homogen-
eous equations can be decomposed into eight subsystems in accordance
with the splitting of the space L (11). The systems of equations
for coordinates from the subspaces E1 1 and E1 2 have identical
coefficients and each contain two equations; the systems of
equations for coordinates from the subspaces E2 1 and E2 2 also have
identical coordinates and each contain three equations; for the
coordinates from the subspaces E3 1 , E5 1 , and E6 1 , each system of
equations has one equation, and for the coordinates from the sub-
space E41 -- a system of two equations.

The structure of the characteristic equation corresponding
to Eq. (25) can be represented as:

det 1i c,. + Q2m , -- o2Aa', II = {det g cg, + Q 2M, - A )2 [( X

00 1 1 1 Al (26)
x det I! c + 0 - o2A-. , 11(c + Qm~ -  o2A ')  (6

det1 _ 12 ,() 2 ) 2 ) (26)

l (cO + £ mI - ~2A(
6

)) 0.

From Eq. (26) it follows that the control object has two
series of frequencies of free oscillations; symmetric coordinates
q311, q5 11 , and q611 coincide with the normal coordinates; and
the forms corresponding to them coindide with the normal forms
of the free oscillations of the structure. From Eqs. (26) we
can readily determine the frequencies of the oscillations for
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these forms. TQ find other frequencies, we must solve two
characteristic equations of the second order, and one of the
third order in wd.

Certain simplifications owing to the symmetry of the control
object emerge-also in the analysis of the closed stabilization
system. Thus, in the control of balanced forces that are applied
as shown in Fig. 2, and in the placement of transducers in
accordance with the symmetry group of the object, only the tone
of elastic oscillations of the degenerate type (E1 1 , E1 2 ) will be
excited. This fact simplifies the solution of the stability
problem, since the characteristic determinant of the corresponding
system of equations can be reduced to the block-diagonal form.
Given another structure of the system of equations (for example,
each control moment is applied along each axis and an asymmetric
transducer arrangement is used) all tones of the oscillations can
be excited. However, employing the symmetry properties of the
object even in this case facilitates the solution of different
problems of object control. Thus, the problem of stability of
motion can be solved by decomposing the characteristic determinant
into blocks on the basis of the object symmetry (cf. the structure
of determinant (26) with subsequent expansion in the neighborhood
of the poles of these blocks as has been done in the study [2]).
Some simplification arises also in solving problems of optimizing
objects described by symmetric matrices. To solve these problems,
often the procedure called the method of decomposition is used.
If the control object is symmetric, subdivision into subsystems
is carried out in a natural way by converting to symmetric coordi-
nates, which considerably reduces the volume of computations
required for taking account of the remaining interconnections.

An algorithm for solving the problem of stabilizing multi-
dimensional elastic flight craft with liquid contents. Let us
examine the perturbed motion of an elastic flight craft (FC)
with liquid contents in the yawing plane, characterized by lateral
displacement [sideslip] z(t) and yawing angle i(t) of an object
as a solid body, generalized coordinates q.(t) (i = 1, 2, ..., k)
of elastic oscillations of the FC body, anA generalized coordinates
r. (s = 1, 2, ... , p) of oscillations of the overall surface of
the liquid in the s-th tank given the condition that only the
first (fundamental) tone is excited in each tank. The system of
equations of motion in this caser::is of the form [3, 12-14]: /53

k p

t 1 sL =1=a*,z + aip + a**V + (arq+q + a ± ± a+66,
S=1 

C27)
qi + siq + coqi = a~z + aq.,p + aq,,'P ± a.,r,4 aqi66,

r + F,'r, + Or = a,2 z + ar, ar + a .
it=

(i=1, 2, ... , k; s= l, 2 ..... . 79



For heavy ballistic type, flight craft with large aspect ratio and
a large number of fuel tanks, allowing for the elasticity of the
body and the oscillations of fuel in the tanks leads to the
system of differential equations (27) being of fairly high order.
Thus, allowing only for one form of elastic oscillations of the
body and one tone of oscillations of the liquid in one tank of
the FC increases the order of the system of differential equations
by four. Accordingly, developing methods of analyzing the
dynamics of controlled elastic flight craft with liquid contents
as an essentially multidimensional system of automatic control is
an urgent problem.

Let us introduce into consideration the 2(k + p + 2)-dimensional
vector x with components

x= z, x = z, x 3 = 4, = , x2i+3 qi,

X2 (i+2, = qi, x2 (i+s +3 r= s, 2 (i+s+2) = rs

(i= 1, 2 ... , k; s=l, 2, ... , p).

Then, system of equations (27) can be reduced to the form:

x = Ax + b6 (28)

where A is a square matrix of order 2(k + p + 2), with the
following structure: the elements of the (2p - 1)-th row are
equal to zero, with the exception of the (2 - 1,2j)-th element,
which is equal to unity, and the (2p, 2v - l)-th and (2p, 2v)7th
elements of matrix A are equal to the (p, v)-th elements of the
matrices M-1P and M- 1N, correspondingly (p, v = 1, 2, ... , k + p +
+ 2); b - 2(k + p + 2)-dimensional vector, whose components with
uneven numbers are equal to zero, and those with even numbers are
calculated by the formulas:

b21A= m- 1  + m a, 6  k

Here m are the elements of matrix M- 1

M- Ek+2 + M 1 2 (EP - M-2M) '- M -M 1 (EP - M 2 1M 12)I

P= P[...i ..1 I .N= 0

-azr, - az,0

-,4 , ... - azrp

M 12  - aqp, . . - ak'p

80aqr aqkrp
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... k /54
M 2 1 -- 2 - - /

- ar - arq, •... q ar

, a;*,,

ap a, a, aqk
1 1 - agqz aq, 4 -Eq .. O

Saq, aq 0. 0 8-

- O a'j azq " azq
0 ap aq ... a.

q1

0 aqk 0 ... 2

N22 = diag {- E, P2 = diag f- (2 ', ,

Ek+2 and Ep are unit matrices of (k + 2)-th and p-th orders,

respectively.

The problem of the stabilization of the unperturbed motion of
an elastic flight craft with liquid contents consists of finding
the control action 6 = 6(x1 , ... , X2(k+p+2)) as a function of the'

components of the vector of state x, which would ensure the
asymptotic stability of the unperturbed motion x = 0 by virtue
of the equations of perturbed motion (28).

The following algorithm for solving the problem of stabilizing
multidimensional elastic FC with liquid contents is proposed.

1. Let us isolate three subsystems in the multidimensional
system "elastic FC with liquid contents" under consideration:
1 -- "solid," 2 -- "elastic body," and 3 -- "liquid contents."
To this representation of the dynamic system will correspond
the following block form of the notation of the equations of
perturbed motion (28):

xI) All A12  A13  xt ) b )]

S A 2 1 2A 2 A 3 A 2  b (29)

() A31 A 32  A33 J[ ) [b3 )
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where

x"' = colon {z, z, IP, P},

x(2I = colon q, q, ..., qk, qkl,

x(3) = colon (r,, r,, ..., r ,, rpI.

2. For each individual subsystem:

x(i = Aix'f + b"'6 ' (i = 1, 2, 3) (30)

the problem of stabilization is solved by one of the known methods,
as a result of which the control actions 6(i) are determined as
functions of the components of each of the vectors x(i): /55

6"' = K"'xi"( (i = 1, 2, 3) (31)

such that the zero solution of each of the sbsystems

x(i = (A1 + b"'I('P ) x() (32)

will be asymptotically Lyapunov-stable.

3. The control action for the system as a whole is selected
in the form:

3

6= 6 i (xI, . . , Xn ) = Kx,

,=1 (33)

where the matrix-row K, as follows from (31) and (33), has the
following structure:

SK = li' I('2'i K(3,. (34)

4. The stability of the closed system of the object (28) +
controller (33) is verified by one of the existing methods.

It must be noted that the structure of the gain matrix K
depends essentially on the nature of the information used in
forming the control actions. Let us examine several typical
variants of the specifying of information concerning parameters
characterizing the motion of an elastic FC with liquid contents.
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Variant 1. Let us assume that we are able to directly measure
or determine by indirect means all the components of the state
vector of the control object. In this case, the submatrices
Ki) of the matrix K (34) will be of the form:

(i=1, 2, 3; n= 4, n==2k, n = 2p).

Variant 2. If the components. of vector x 3 ) , which are the
parameters rCst) and rs(t) Cs = 1, 2, ... , p) characterizing the
oscillations of the free surface of the liquid in the FC tanks,
are inaccessible to direct measurement and if the control action
6(3)(x 3), ... , x 3)) cannot be constructed on the feedback

principle, the subiatrix K must be of the zero order, and the
matrix K will be of the form:

K = [K"iI) 0K . (35)

Variant 3. Let us assume that by using (k + 1) rate trans-
ducers and one linear displacement transducer, we obtain segregated
data on the rate of lateral displacement [sideslip] i(t) and the
angular rate i(t) af the object as a solid, and also data on the
generalized rates qi(t) (i = 1i, 2, ..., k) characterizing the
elastic oscillations of the FC body [15, 161]. Moreover, by
integrating the signal from the linear rate transducer we determine
the instantaneous values of the lateral displacement z(t, 1) at
the point of transducer placement 1, and also by using the rate
transducer we directly measure the values of the yaw angle p(t, C2)
ath, the point C2. By using this data on the state of the control
object, let us formulate the control action in the form:

6= kz(t, ,) + kz (t) + k*t (t, E) + k 4 ip(t)+ S ;q, (t). (36)

The summed signals z(t, l) and i(t, E2) can be represented as:

R

i=l

k
1P(t, 2)= q (t)- - q, (t) f (),

i=~l

where CG is the coordinate of the metacenter of the object [12]; /56
fiC) and f ~C) are the intrinsic forms and the derivatives
thereof of the elastic oscillations of the FC body.
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In this qase, the matrix K (34.) has the form (35), and the
submatrices KCI) and K(2) are defined by the expressions:

K ' = 1k k; k, -( - ) k k,], (37)

K - [k42 ( 1) -k, ( 2) k (2 kfk (l)- k*fk ( 2) kq 1. (38)

Variant 4. If we use the summed signals z(t, ), z(t, E), (t, 2 )

and $(t, 2) to form the control actions, the control law is of
the form:

= k:z(t, ) + k+z (t, k,) (t, ( ) + k p (t, 2),

z (39)

which can also be represented in the form (33) with the matrix
K by the assigned formula (35), and the submatrices K(1) and K(2)
in this case will be defined by the expressions:

K ) _k k k; ( 1 B ) k. k _ ( ) k*] (40)

K~'2 
= [kf ( ) -- krf (~2) k>1 (1)-- kj, (~2) ... kfk (B) - ()41)

-, kf'(U () kfk ( k) . I )1.

Analysis of the stability of the closed multidimensional
control system in several cases can be made by the method of the
Lyapunov vector function [17-19]. However, this method, based
on overstated estimates of the Lyapunov functions V(i)(t'(i))
constructed for each of the subsystems, leads to intensified
sufficient conditions fori ,the stability of the closed multidimen-
sional system and in practical use cannot yield the desired results.
In practice, when synthesizing a stabilization system we must have
certain confidence of the stability or instability of the closed
control system, which can be achieved by using a reliable (within
the frame of necessary and sufficient conditions) stability
criterion. A key feature of this criterion must be its simplicity
from the standpoint of feasibility in a digital computer.

One such criterion,',in our view, is the Zubov criterion [20],
which is based on setting up the matrix:

R = E 2(A - bK - E)-'

and raising it to the power a = 2V (V = 0, 1, 2, ... ,). According
to the Zubov criterion, the unperturbed motion of the closed system
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under analysia will be asymptotically Lyapunov-stable if and only
if in the raising of the matrix R to the power a the elements of

the matrix RU= r '
4

21  will tend to zero as a c . This will

occur each time when the inequalities

2 (k-'-p- 2) 2 (k+p-p -2) ()l  Ir1 j<2 (k + p + 2), L(G)=  (rjp)-<i" (43)
i=1 i.-1

will be satisfied for a sufficiently large a. But if the selected
controller parameters do not belong to the domain of system
stability in the space of admissible values, the sums in relations
(43) will rise sharply with increase in a.

The above-described approach was used in the practical solu-
tion of the problem of stabilizing the unperturbed motion of an
elastic object with liquid contents, whose perturbed motion is
described by a ,30th-order system of differential equations. For
all the above-indicated variants :of specifying information used
in forming control actions, values of the controller parameter /57
were found for which the closed multidimensional control system
exhibits the property of asymptotic Lyapunov stability.
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ANALYSIS OF NATURAL OSCILLATIONS OF A SPACECRAFT

N.F. Gerasyuta, Yu.D. Sheptun, and S.V. Yaroshevich

Let us consider the oscillations of a spacecraft with a
relay jet orientation system traveling in the atmosphere at the
altitude h = 100 - 120 km and acted on by a constant perturbing
moment; let us investigate the dependence of the form of the
spacecraft oscillatory motions on the actuator efficiency.

The equations of spacecraft oscillatory motion are of
the form:

d + 'sit& = aosx + M.S+ M. (1)

-6, for j>; m an d  < 0,

= 0 for ljl<mA; A>ji>mAand >0,

+62 for ij-A; ji<-mA and -,- >0;

i = T? + f, 6 ,;

e and 6 are coordinates characterizing the attitude of the /58
spacecraft in motion about its center of mass and the state of
the stabilization system actuators, respectively; A is the zone
of insensitivity of the stabilization system relays; m is the
characteristic of relay ambiguity; Td is the time constant of
the differentiating loop; M is the reduced perturbing moment;
a00 and a06 are coefficients characterizing aerodynamic and con-
trol moments, respectively. Let us reduce these equations to
the dimensionless form [ll. We introduce the new variables
T and q:

we obtain:

= + ip L,

-6 1 for />1, j>m and A<O0,

0 for..,jif<m and i >0,l> I= dr (2)

1> jl>m

e62for < -1, j< - ani-O >0.

STp + p, X= - A, T = Td , L -
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The equation of the phase trajectory of a spacecraft in
dimensionless quantities is written as follows:

(P 2 _ 
= 2 ( - L) .q+- (+ --p (3)

L
Changing the variables . and , let us

simplify the phase trajectory equation:

9P + ± = 2x ( p P) + , ( -2).

The form of the possible phase trajectories in the plane (', 7)
is shown in Fig. 1. The sections i to i + 1, i + 2 to i + 3
(i = 0, 1, 2, ...) correspond to motion with actuators engaged
(K # 0), the sections i + 1 to i + 2,.:and i + 3 to i + 4
correspond to passive motion CK = 0) acted on by aerodynamic
and perturbing moments. The change in the angular rate P
of the spacecraft when diametrally opposite jet nozzles of the
orientation system are switched on, which occurs when the

imaging point leaves the zone IT -+PI<1 , are characterized

by the quantities o, (o: = 'i4 -- '' and . = 3 - -

The lines of the switching on and off of the control
nozzles in the plane t, i are inclined straight lines, whose
equations are as follows:

Ti + V=1 +

T - forward actuation,

L

T _ forward disengagement
L (not shown in Fig. 1).

Let us select' as segments without contact [21 the segments /59
of the straight lines of inclusion:

L L L C4

L L L (5)T q =-- 1+ -, -1+ 41+ -

Let us set up the point transformations of the segments (4)
and C5) into themselves. Two kinds of simple phase trajectories

89



are possible, determining these transformations: trajectories
intersecting the ordinate axis -- double-impulse cycles (shown
with a solid line in Fig. 1), and trajectories not intersecting
the ordinate axis -- single-impulse cycles (shown with a dashed
line). The lines FF' and KK', whose equations are p = i/T, are
the asymptotes of the single-impulse cycle of maximum duration.
These lines indicate on the phase plane the largest change in
the angular rate

2 (X + L)

2 ( - L)
(2r V

for which a single-impulse cycle is still provided. If ) > 0ir,

then double-impulse cycles are possible.

Point transformations are
determined by the following recur-
sion functions:

a

, for the segment (4) into itself,
i+J "i if Wl < ( Ir, then:

# V, ± -§2}; ' (6)

+1 /If ex > or, 0 > 02r, then:

1 \A + ; fori a,

Fig. 1. Possible phaseF( () =  () /C+(B+( , 2 -A \2
trajectories. K -

for" V> ;
for the segment (5) into itself, if 2 <  2r, then:

() -)= +V C+i,p_ A'. (8)

If (2 > 
0 2r, Wi)> lr, then:

(4)= T +  C + (1p 2 A,K,' (9)

f 7()= +  B+ C+ 2- 2

for <- .K,
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Here L L
l=1 +T; az= 1 - K=1- T,

K =1 T V, K 2 = 1 - T , A1 = a1 - (oT, A2 = a 2 - o2T,

C = - (1 - K) (a - A2).

The form of the recursion functions Cthe Koenigs-Lamereaux
plt) is shown in Fig. 2.

If the perturbing moment acting on the flight craft is
equal to zero (L = 0), Eqsa.:(3) - (9) are simplified.

It is of interest to analyze the effect of the difference in
control impulses on the nature of oscillations. The problem is
solved by analyzing the oscillations as w2 is varied from the
largest possible value to zero. The quantity Iwl is assumed to
be constant, satisfying the condition wl > wl-

The phase trajectory of
a spacecraft is a piecewise-

c, continuous function, con-7lb sisting of elements of
2 hyperbola branches. The

conjugate points of the
elements of the hyperbolas

_ 4 lie on the engagement-
disengagment lines (Fig. 3).
The hyperbolas issuing at
the points whose coordi-

VZ nates satisfy the conditions

11r. < 7, 'Pv > a are sym-

metric relative to the
Fig. 2. Koenigs-Lamereaux plot. ordinate axis. The endpoints

have the coordinates pv<:4
and 1P > ip,.

The sections of the trajectories issuing at the points
,P, < lPx; < 3, I 7 < IPA , l,, IN < IP, < IP and P < 1PI', < 1 P , are

elements of the branches of hyperbolas symmetric relative to the
abscissa axis. The trajectories terminate at the points of the
sgmen(is of the inclusion lines NN, MM, ip < , 'P,, and P,, <~ .

The trajectories issuing at the points with coordinates

1' < V < or pi > Ip > I, lie only in the upper or lower
half-planes, respectively.
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The possible motions
of a spacecraft are whodlly

, N' defined by the phase tra-

m jectories consisting of
the above-indicated

hyperbola sections.

r N Let us indicate the

H MN abscissae of the chara-
teristic points 1 to 10
Csee Fig. 3) of the phase

Fig. 3. Characteristic elements plane p, :

and points of phase trajectories.

A1  A1  c1  A.
'=-k ' = = ,, K =4 a' P,

A, /61'% --- A2, W7 7

=-- V C + A'2 (I -  A +- A

Let us limit ourselves to studying the oscillations charac-

terized by the transformations of the form

With decrease in w2, the form of part of the phase trajectory
lying to the right of the straight line * = A1 /K 1 changes, and
the number of steps of the sliding regime between the points a
and b becomes smaller (cf. Fig. 1). A conversion occurs from

the transformation FI = T 1-T,T to the transformation

_,= T1~-3 11T, -2= T-T1T, F..., , = TT, with the recursion functions

F () 1-2= E {q (E (P)l, F = E I-3 1 fI ( J ,F-= E-4 11 I P)J .... and.: ' (P) = 1 I (P).

A further decrease in the parameter w2 causes the successive

appearance of the transformations nI = T2T,IF= T ~. ., 1 =" TT,

and then oscillations characterized by complex transformations

of the form p = T -'Tp are produced.

The transformation multiplicity n is reduced; when w2 2< 2R'
the simple transformation T, appears.
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TABLE 1.

Designation Equality Cor-
of Bifurca- responding to
tion Instant Bifurcation 2

Instant

A2  Inception of the & ( ]] 3.82
transformation H2  .

B2  Disappearance of 3.78
the fixed point of P iI
the preceding trans-
formation

/ C2  Inception of the EA 3.17
fixed point of trans- L T
formation 12

E2  Change in the form of n 2.72
the hyperbola of
transformation T,

F2  Appearance of the 1[ (2.59
hyperbola of transfor-
mation TE in the
domain 9 < 0

G Inception of the m , -2.34
transformation

fn3 = TI"T

H2  Disappearance of the 2.3
fixed point of trans- \Ks K
formation H2

Let us examine the sequence of conversion from some forms of
oscillations to others, with the example of the motions characterized
by the transformation R2. Following the work [2], we note the
principal bifurcation instants of the transformation H2 = TFT.
The nature of the bifurcation instants, the equations of the
recursion functions (in symbolic form) and the system parameters
are given in Table 1 Cwl = 1.5).

The generalized form of notation for the equalities correspond-
ing to the bifurcation moments is

1 f[e (r) = R. (10)



In equality Cl) r and R take on the values Al/K and E(A 1 /K) for /62
the equation of moment A2 ; the values A /K and e(Al/K-) for the
equation of moment B2, and so on. Here ($C) is the transformation
that is the inverse of EsC) [2]. To obtain the generalized
equation of the bifurcation curves w2 = wal(X), let us rewrite
equality CIO) in the expanded form:

<- C+ (r)- T +B - R

Solving (11) for w2 , we get

2 = - (a2 -- D 

where

+ ( e-f ) a--K.

Here K = K(A).

The Koenigs-Lamereaux plot corresponding to the moment of
inception of transformation 12 is illustrated in Fig. 2. Analysis
of the plot establishes the range of the determination of function
F2 . One limit of the range is the value 3 = A1 /K2 . To find the
second limit, let us write the equality that is satisfied at the
moment of inception of the transformation:

and let us denote the value of function F2 at the moment of
inception by:

Then CV2 ) 2 &IK or V2  1 .ECI/2). In Fig. 2, the dashed line
123 indicates the transformation C(A /K 2 ) and the left boundary

= V2 of the range of determination of function F2 is noted.
Tie function F 2 is defined for the values E(V2 ,MN.
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Let us indicate the bounds to the determination of transfor-

mat ion 1 = TT, . The recursion function of the transformation
is:

F3 = Is{ [0 ).

The left bound of the range of the determination of E3 is the
coordinate of the point of intersection of the abscissa axis
and the dashed line abcde (see Fig. 2):

The left bound is infi ( 3  , where =2
03 K Ir3*

A further decrease in the parameter w2 causes the successive
appearance of the transformations H4, R1, H6, **- n. The nature
of the onset of the bifurcation moments of transformations Hn is
similar to the nature of the onset of the corresponding moments
in the transformation H2 . The ranges in which the transformations
exist are determined by graphical methods used above for the trans-
formations H2 and H3. Analysis of the Koenigs-Lamereaux plot
(Fig. 4) shows that as w2 decreases, the function n(p, w2 ),,approaches
the bisector of the right angle and therefore the bifurcation
moments En and Fn in the transformation Hn can be absent. The con-
ditions of the existence of the bifurcation instants En and Fn are, /63
respectively, the inequalities:

K 2 )<(12)

i (13)

Both conditions must be determined when w2 = w2 n Using inequalities
(12) and (13), we can indicate the transformations Hk and Hk such
that after these the bifurcation moments E+l and F are absent.

I.-- The value w2 = w2 for which
13 o the condition:

2.4K----- --- ---- -.T

0.( K, K2 (14)

' i is satisfied is the bifurcation
I- jvalue of the appearance of the

0,7 4 r. .s fixed point of the simple space

Fig. 4. Koenigs-Lamereaux plot TD. From equality (14) we
for various w2 ' find:
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f where

01 = XT K -- (a, - I(,A,)

Fig. 5. Double-impulse cycles at The phase trajectory cor-
the moments of the inception, dis- responding to wl is of the
appearance, and transformation T~ 2
and also the symmetric double- form of a closed double-

ampulse cycle. impulse cycle displaced along
the ordinate axis toward the
positive values. With decrease

in w2, the trajectory is displaced toward the side of negative P
values (Fig. 5); when the equality

is satisfied, to which the value

011= - (a2 + KzO <2 T

correspondd.i,: where 02I -K / K -K

the fixed point of transformation T disappears.

The coordinate of the fixed point of the transformation is /64
defined by the equality

2AoiT a R, - V/(2AwT + o1RJ2 - S (02 - 2)

2Tk (o -0)

where
Rt = (2 (B + C) + Ac - a + oT; S =4T 2o(K2B + A) -R.

Here and above roots satisfying the physical meaning of the
problem

1-T 
I, - T I + T VT)

were indicated. If 01 =  and L 2 0, then 0 =1---T
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(the phase trajectory is symmetric relative to the coordinate
axes). We note. that when the perturbing moment is present (L =
= const = 0), it is impossible to establish the double-impulse
closed cycle when wl w2.

When w < w2 , the nonsymmetric closed double-impulse cycle
converts in o an m-impulse closed cycle, consisting of m - 1
double-impulse and one single-impulse closed cycles. The single-
impulse cycle begins and terminates at the line MM (cf. Fig. 3).
We will analyze possible motions by using the recursion function
(9). The Koenigs-Lamereaux plots for w2 < II are shown in Fig. 6.

With decrease in w2 , the abscissa of the bound to the discontinuity
of the recursion function of the point transformation increases
modulus-Wise and the curves C() and y(V) are shifted parallel to
the abscissa axis. Here there is a successive conversion from
the m-impulse cycle to the cycles m - 1, m - 2, ..., m - X = 1.
We illustrate the inception and disappearance of these cycles
with the example of a three-impulse cycle, which corresponds to
the point transformation P2 

= TBTy, with the recursion function
f 2 (p) = yjB(). The bifurcation instants, which can occur in
the transformation P2 , are shown in Table 2.

A feature of Pn type trans-
-I i formations is the possibility

that for the same w2 values
fixed points of two neighboring
transformations Pn and Pn-l

exist. Figure 6 shows the
plots corresponding to the

-07 - limiting transformation cycles
plotted for the same w2 . The
form of the limiting cycle
depends on the initial coordi-

/ I. 1 nates of motion. The set of
- - possible motions observed with

,: change in w2 depends on the
selected wl. Thus, the trans-

Fig. 6. Examples of the Koenigs- formation P2 = T Ty, with
Lamereaux plots for the trans- decrease in w2 , can convert
formation Pn (~> ;).I either to the transformation

P= TvT-' , or to the simple

transformation T. The condi-
tion of the existence of trans-

formation En is that the inequality:
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be satisfied. Here

VK- T~ (1+- Ah (A1 - K,)21; A, A (6).

The disappearance of the transformation Pn occurs when

After this equality has been satisfied, the existence of only the /65
simple transformation TB is possible.

The possibility that the bifurcation instants C* and E* exist

is also determined by the value of parameter wl. The conditions
for the existence of these instants are, respectively, the inequali-

ties V " and - ) > where 2r - (A-(O 2 rT).

The principal phases of change in the point transformations
are illustrated by Fig. 7, where the bifurcation curves in the
coordinates w2 andAk are represented. All curves are plotted for
the values wl = 1.5 and L = 0. The first (L) group of curves
corresponds to the transformation H2 , the second (II) -- to the
transformation Tn, and the third (III) -- to the transformation

P2 . The notations of the curves coincide with the notations of
the bifurcation instants. The functions Cn, Hn, and C correspond
to the bifurcation instants of the inception (Co, CA) and dis-
appearance (Hn ) of the simple transformations Tf and TB- The line

Qn((w2 = const) characterizes the function w2 = w2(A) for the
case of the symmetric cycle (w2 = wl). Analysis of the bifurcation
curves allows us to conclude the following:

-- with increase in the effect of the atmosphere (with
,i decrease in the flight altitude), the multiplicity of the

complex point transformations (the number of impulses in
the closed cycles) becomes smaller. This follows from the
drawing together of the bifurcation curves of groups I, II,
and III,. with increase in A;

-- the value of X affects the sequence of the onset of bifur-
cation instants, which is illustrated by the nature of
the curves Ct and G*. If <. Al, then the fixed point of
transformation Tg appears for w2 values that are smaller
than those for which the fixed point of transformation P2
disappears. If A > X1 , the moment of the disappearance of
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the fixed point P2 sets in. for smaller w2 values and
the instant of the inception of the simple transformation
Tg. In the domain 0 < X <. X1, the transformations PB
are possible; and

-- if I = m2 CAw = 0)., then regardless of the value of X /66
Cregardless of the flight altitude)., only the double-
impulse symmetric cycle is established.

TABLE 2.

Notation of theNotation of the Nature of the Bifurcation Equality Cor-
Bifurcation Instant responding to

the Bifurcation

Instant

A* Instant of the inception of the A
fixed point of transformation P2  K K

B* Instant of the disappearance of (the fixed point of transforma- AJ

tion P

C2 Instant of the change in the form vY(-A)1of the hyperbola in the transfor- A2,

mation Ta

E* Appearance of the hyperbola of 7 -
transformation Tg in the domain

< 0

F* Instant of the inception of the pII _ =
fixed point of transformation

P = T2 T,

G* Instant of the disappearance of [y A
the fixed point of transfor- - K
mation P2

Let us examine the stability of the craft oscillations (the
stability of the fixed points of transformations Hn and Pn.
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We can find the fixed point of transformations Rn and Pn by
solving the equations:

F, (9) - = 0, (15)

As an example, in Fig. 8 are presented the curves of the
recursion functions F2 corresponding to the transformation H2 and
constructed for different w2 , with constant wl. The abscissae
of the points of intersection of the curves with the bisector of
the right angle are the solutions of the first of the equations
(15). The initial data used in constructing these recursion
functions are as follows: wl = 1.5, T = 0.4, X = 4.2-10-2, and
L = 2.1-10-2.

The stability of the fixed
points, according to the Koenigs

Stheorem, is defined by the
value of the derivative recursion
function at the fixed point

= C). If dF,

the fixed point is stable, and

CI dF.
3 when -- ic>1'

it is unstable. [1, 2].

Let us examine the case when
2 &the perturbing moment is equal

to zero (L = 0). The simple
fixed points of transformatilon
T are defined from the equation
p ) - $ = 0, or, which amounts

to the same thing:

,f .2 1 0_.4 4 (1- )(1- K), z= 1- oT.

Fig. 7. Bifurcation curves.
The equation has the single

root ]+2 , and therefore

the transformation T, corresponding to the single-impulse oscilla-
tions of the spacecraft, when wj = inf(wl, w2 ) < wr, has the single /67
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simple. fixed point

1.7 -- The derivative recursion
J.0. function e( ) is of the form:

A1

de K

I.4 9. 06 0.7 0§ 0. Y its value at the fixed point is:

Fig. 8. Recursion functions 1+dA, A,
de 2 K

of the point transformation -- = +
SOT 2L2

n2 < T' / .> (2r,

Since X > 0, for any values A1 we have:

de (16)

Therefore, the fixed point of transformation T. is always
stable, regardless of the values of the system parameters. The
fixed points of transformationK!'T, are always stable; for any

S> and P, the equation>0 and (P E I,+ TI

Id <1 (17)

is satisfied.

Since the inequalities (16) and (17) are valid, the fixed
points of the complex transformations Hn and .Pn are stable, which

follows from an analysis of the expressions for dF and df-

For example, the derivative dip dip

dF ( p) _ n-i

dip dp I dip
i=1

for all Jp values does not exceed unity modulus-wise, since

<1, dip <1. and
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If the perturbing moment is not equal to. zero CL 4 0), the
derivatives of the simple recursion functions are of the form:

AI

d 1/B +, -i

The fixed points of transformation T. are stable for any values
of i, if the condition A > 0 is satisfied, or which amounts to the
same thing, 2 - ,T > 2 . The latter is always satisfied, and

therefore, the single-impulse cycle is stable.

The fixed points of transformation Tn are::stable for any /68
values of i, if C > 0 and B > 0, or which amounts to the same
thing:

12- e2T)(2L + oT)>0, (18)
2L (2 - eoT) < owT (2 - woT). (19)

Inequality (18) is wholly satisfied, and for inequality (19)
to be satisfied, we must have wl = 2L/XT.

In the case wl > 2L/XT, the transformation T has a single
stable fixed point. If wl < 2L/XT, transformation Ty has two
fixed points (see Fig. 8), one of which is always unstable.

The proof of the stability of the second fixed point is
analogous to the proof of the stability of the fixed point of
the simple transformation corresponding to the double-impulse
cycle, for the motion of ,the craft outside the atmosphere when
acted on by a constant perturbing moment [5].

The fixed points of complex transformations Un and Pn cor-
responding to complex periodic motions in the atmosphere when
acted on by a constant moment are stable. The proof of the
stability in the case wl > 2L/XT is analogous to the proof of
the stability of the fixed points of the complex transformations
for motion in the atmosphere in the absence of a perturbing
moment, and is also analogous to the proof of the stability of
the fixed points of complex transformations for motion outside
the atmosphere when acted on by a constant moment.,
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Let us compare the amount of energy expended in providing
oscillations in the atmosphere when Aw 4 0, with the amount of
energy required to produce the symmetric oscillations (Aw = 0)
under the same conditions. By integrating the equation of
motion (2) and transforming it, we get a formula for determining
the period of the closed double-impulse cycle (cf. Fig. 1):

I (1 - K 2 I Pi+2 I) ( - K 2 i)
T InT(<21 i+2 -- A2) (K.P= -A-

Analysis of the dependence Ta = Ta(Aw) (Fig. 9) shows that
in the case of the double-impulse cycle, the symmetric oscillations
(Aw = 0, L = 0)

Tc= 2 In 1 -- K
T -- KIpi - A,

have the shortest period.

For the complex n-impulse cycle consisting of m i single-impulse
and m2 idouble-impulse cycles (n = ml + m2), the period of oscilla-
tions can be determined from the formula:

T,= ,x 7)+ -- 2),

where 
i

I In

(1 + K2A +2) (1 - K21 4 ),0 In
S fI. (A - K2'tVip_) (A2 + K 2 pi+ 3)

(1) (2)Here Ti and Ti are the durations of the single-impulse and

double-impulse cycles, respectively.

If the energy consumption in a single nozzle engagement is
denoted by qj (j = 1, 2 -- the nozzle number) and if we assume
q1 = rwl, q2 

= rM2, where r is the coefficient of proportionality,
the consumption of energy in the time t (t >> Ta) for complex

cycles of transformations of the form 1,0 and P will be Q =
n n

= 1(m 2 + 1) ., + m2(21.

2rt
For the symmetric cycle T . In order to compare /69

the energy expenditure, let us examine the ratio Q = Q/QC. Figure
10 shows the dependence of the relative energy expenditure on the
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parameter w2 . It is assumed that L = 0. A plot of the function
QCw2 ) can be considered as consisting of individual sections cor-
responding to periodic motions of different types. Thus, for
this example, the section of the functions Q(0 < 2 < 0.83)
illustrates the energy consumption in the case of single-impulse
periodic motions. Double-impulse cycles are established in the
range of values 1.34 6 2 < 1.7. This range of values divides
the plot of Q(m2) into two parts. The set :of parts lying to the
left of the point ACw2 = 1.34, = O). corresponds to periodic
motions, whose phase trajectories contain single-impulse cycles
lying in the left phase half-plane; the set of sections to the
right of the point BCw2 = 1.7, q = 0) correspond to the motions
whose phase trajectories have single-impulse cycles in the right
phase half-plane. Thus, the sections Q(0.8 < w2 < 1.74), and
Q(2.3 < m2 < 3.2) illustrate the energy consumption in establishing
the three-impulse cycles, and the sections Q(1.1 < w2 < 1.26),
q(2 < w2 < 2.3) -- the five-impulse cycles, and so on. The cycle
multiplicity increases with increase in w2 (w2 - 1.7) and with
decrease in w2 (w2 + 1.34). 'TheL.sections:of the functions Q
for the values 1.26 w2 < 1.34, and 1.7 < m2 < 1.8 are not
shown in Fig. 10.

The function of the
T relative expenditure Q(w2) has

extremal values. The minimum
values equal to zero occur at
the initial and endpoints

.. K isolated above individual sec-
tions; the maximum values occur
within the sections. At the
initial and endpoints of the
sections, the first derivative
dQ*/dw2 is discontinuous. The
value of the function Q - 0

4corresponds to the closed phase
-0.2 -a I am trajectories, which include a

hyperbola passing near the
Fig. 9. Plot of the dependence origin of coordinates (Ta + m).
of the duration of the double-
impulse cycle on Aw. By analyzing the dependence

of the relative expenditure on
the values of w2 when wl = const, we note the following: the
energy consumption depends essentially on Aw; the smallest energy
consumption to ensure the oscillatory motion is needed when
establishing single-impulse cycles; it is difficult to realize
periodic motion with energy expenditure close to zero, since at
the points of the minimum of function Q the derivative CdQtdw 2 ) + ; /70
the energy consumption when Aw = 5 - 10% is much smaller than in
the case Aw = 0.
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In conclusion, we can state
the following. The form of the

/ oscillatory motions of a space-
craft and the amount of energy

~. expended in orientation dependius,
Sessentially on the difference of

'T the impulses of the control moments
and on the atmospheric density.
Simple single-impulse and double-

i -impulse oscillations are possible
0 / v vi/V if the control impulses are

0,. 1.0 A 1. 20 2. 3.0 c identical and the perturbing
moment is absent. For uneven

tFig. 0. Functions of the impulses and when a perturbing
moment is active, complex multi-
impulse natural oscillations of

different types are possible; with increase in atmospheric density,
the oscillation multiplicity becomes smaller and the sequence of
bifurcation instants changes. Not all periodic motions of the
craft are stable, but in any multi-impulse imotion there is a
stable cycle. The smallest amount of energy to ensure orientation
of the craft is expended when establishing single-impulse cycles;
in the realization of multi-impulse cycles,',the energy expenditure
can be minimized by the appropriate selection of the difference
in the impulses of the actuators.
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INTEGRATION OF EULER'S KINEMATIC EQUATIONS

A.I. Tkachenko

To stabilize the attitude of a spacecraft (SC), in several
cases one must know the instantaneous values of the Euler angles.
characterizing the orientation of the SC in space. One method
for the autonomous determination of these angles is the integration
of Euler's kinematic equations in an onboard digital computer using
data arriving from rate transducers mounted on the spacecraft.
Here we must select for the computations a sufficiently simple and
exact algorithm that does not impose overly rigorous requirements
on the characteristics of the computer.

Let us determine the orientation of the right-handed orthogonal
trihedron xyz associated with the SC relative to the same nonrotating
trihedron nC by means of "aircraft" angles: yaw t, pitch 0, and
roll y. Let us introduce the notation:

X1 = sin ip, X, = cos V,
Yl=sin , Y, =cos O6O, (1)
Z1 = sin y, Z = cosy.

The kinematic equations that the variables i, 0, and y satisfy
can be written as:

S= o"z + j2 , (2)

,= ( -°Z 2 ) Y1 + (W.

Here ex, wy, and wz are the projections of the angular rate /71
of the SC onto he x, y, and z axes. To determine the orientation
of the SC relative to the trihedron EnC, we must integrate Eqs. (2)
jointly with the system of equations:

i = X, X, = - qX,
(3)

-p21, x - 410

21= VZ2, Z2
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We can use the quantities XI, ... , Z2 to compute the direction
cosines characterizing the relative orientation of the trihedra xyz
and qi.

We will assume that the data on the SC angular rate arrives
at the computer in the form of the increments e8x , and 8, of
the integrals- of w, my, and wz in the time (step) f constant
duration h:

$n,+ tn++

Ix, n+1 f ()o,.d[,  Oy,n+l Oyd'

n+l (4)

By introducing the notation

X , 9 W= (01 , 0= 0 O ,

X= y, I= 0 0 0 00'

Z 0 0 0 0 -- ' 0

- Z Z0

F(X) > 0 ZI 2
Y, Z, Y ZI

Y, Y z

we can represent the systems of equations (2) and (3) in the form

co = Fo, (6)
X = DX. (7)

To derive the formulas of the numerical integration of Eqs. (6)
and C?), using the information C4) let us make the assumption that
the functions w ,.y, and wz are analytic in the neighborhood of
the points t = tn, Which can be written as:
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Then we can introduce the expansions

() = D,, (t )+ , (t- t,)2 +

F IX (t)] = F (X,,) + F (X,,) (t - t,,) ... (9)

X(t) = X, + ,,(t - t) -- -X,(t-t) ...

(P (t) = ,= + P (t - t,) + ...

By integrating equalities (8) and (9) in the limits from tn to
tn+1 and with reference to formulas (6) and (7), we get the powere

series:

Ont1 = h± nh±+ h +nh + (10)O,,, = o,,h + -- "+ ,h (10)

A(D,+, = (D+1 - D, = (,h + q,h + ... (ii)

Ap,,+ = (p,n+ - ,F = F (X,,) cofh + F (X,) (z + F (X,) (l (12)

X,+1 = E + 4,,h + - (, + 2) h2 +

+ ( + 3a6,, + 6() h + ... (13)

The unit matrix E with dimensions 6 x 6 was introduced into
formula (13) and the equality Hi = H was taken into account.

The simplest first-order algorithm for integrating Eqs. (6)
and (7) has the following form:

APn+1= F (X,,) 0+,, (14)
X,+, = (E + Ao,,+,) X, . (15)

in matrical notation.

The increments of the Euler angles in the step are found
from the formulas:

A1nf+ = Oz,n+IZ2n + Oyn+lZn,,

AIn+ I - (0y,+IZ2,,-- 0 ,n+IZI.),
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The instantaneous values of the angles , ., and y are
determined by summing the increments of these angles. The com-
ponents of the vector X are computed by the formulas:

X1,n+ = Xn Aln+IX2,,,
X2..+1 - X2n - A1n+Xn,
. . . . . . . . . . . . . . (17 )

22,.+1 = Z2n - AVyn+Zl,.

Substituting expressions C10). and (11) into formulas (14) and
(15), and comparing the results with formulas (12) and (13), we find
the estimates of the errors of the algorithm (14) - (15) in the step:

6Xn+1= - hx, .
1,,

If the quantities wx, wy, and wz are large enough, to obtain
satisfactory precision we must perform computations using formulas
(16) and (17) with a very small step, which leads to a heavy load
on the computer. Therefore it is preferable to use more exact
algorithms capable of increasing the integration step and of
reducing the volume of computations without detriment to precision.

Using the expansion /73

F (X,_1)= F (X,)-F (X,)h+ - (X,) h2 .... (19)

we obtain a formula of second-order precision for integrating
Eq. (6):

Aqn+l= - [3F (X.) - F (X._ 1)] 0,,. (20)

The corresponding expressions for the increments of Euler
angles differ from the formulas (16) in that instead of X1 n, X2 n'
... , Z2n the quantities (3X)... (3Z2 -Z ) apppear

in them. The error formula (20) in the step is a quantity of
third-order smallness relative to each;

6 -= - 12 [F (X,) o_, +  5F (X,) o,,l. (21)
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For the first step (,"fitting" of algorithm (20)), when the
values X,nl, ... , Z2,n-1 are not known, we can use formula (14).

The error introduced here is a second-order quantity in h, that is,
it is comparable with the accumulated error of algorithm (20).

Computations based on formula (20) must be combined with the
algorithm for integrating Eqs. (7) more exactly than for formula
(15), for example, with the second-order algorithm:

X (.n+= E+ An+1 + ~A+~1) X,. (22)

In scalar notation,

X2.+1 = I n - +1- Z2 A ,+ A,,+n,.
(23)

The error of algorithm (2) in the step is estimated by the
expression

6 Xn+1 = - - h3$ X . (24)

The pair of functions X1 and X2 satisfies the system of
differential equations with the matrix of coefficients, whose
principal-diagonal elements are identically equal to zero. For
these systems, the so-called reversible first-order method yields
a precision of integration that is comparable to the precision
of the second-order algorithms. Calculations were made using
the following formulas:

Xl,n+l = Xin + A fln+LX2n,

X2.n+l = X2n - AqV+,X.n+. 1 (25)

for some (for example, odd) step. In the next (even) step, the
expressions:

X2.n+l = X~n - Ailn+,Xl1,,

X1.n+1= X11 + A± 4n+X 2,n-l. (26)

are realized.
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In similar fashion, the functions. Y,, Y2 and Z1 , Z2 were
computed. The sequence of the replacement of the initial values
of the variables by their computed values in each subsystem is
opposite in the odd and even steps. This system of computation
is much more economical than algorithm (22) and imposes less
stringent requirements on the computer. A second-order algorithm
similar to formula C20) can also be used in integrating Eq. (7):

X,+i = X,,+ AO + 1(3X. - jX_: (27)

with a ,step, error of /74

x = 2 h2(ni , -I- 5,)")X,. (28)

Let us examine one more method of computing Euler angles,
based on the "mean ordinate" method. Suppose we know the values
Xl,n+1/2, ... , Z2,n+1/2 of the components of vector X in the

middle of the next step -- at the instant t = tn + 1/2h. Let us
represent in the form of a power series the value of matrix F
at the instant tn+1/2:

F(Xn+1/2)= F (X,) F - (X,,) h+ i F(X.)h+ ... (29)

With reference to expressions (10)., (12), and (29), we can
easily see that in computing Aq according to the formula

A pn,+= F (X.+1/2) 0,o+ (30)

in the step an error of third-order smallness in h is introduced:

6&Pn+ = - h -h F(X )o)n+F(X)C)1. (31)

The expressions for A6n+l, Aen+l, and Ayn+l corresponding to

formula (30) differ from expression (16) in that instead of Xln'

.. , Z2n the values Xl,n+/2, ... , Z2,n/2 figure in them.

Let us introduce the notation

D,,+, = (3A(D,+, - AD,) = d,Ph +- DIh -- ih • h • •- (3 2)
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Using the expansions

Xn, E = E D,,h +- -- ,)h -V • X
2 

(33)
i 9 h2 -L X, ,

X72 3/ 2 = E Qh+ n X

we obtain a formula for computing the vector X in the middle of
the next step

X;,,/-2 = + D + D+, X,,,/ (34)

with the step error

6x,,+3/2 = - 6 3 + X,,. (35)

When the "mean ordinate" method is used, the values X1 , ... , Z2are obtained with a shift for half of the step forward with
respect to the input data (4). This factor must be taken into
account when performing navigation computations using a direction-
cosine matrix. Instead of algorithm (34), one can use the more
economical, 'first-order reversible method, similar to the method
(25) - (26). For "fitting" in the first step, one can assume

F (X,:) = F (Xo), D, = 3/.A(DV1

without detriment to the precision of the calculations overall.

It must be expected that in most cases of SC motion, the
"mean ordinate" method (30) enables us to determine the Euler
angles to a higher precision than does algorithm (20). The
accumulated error of the integration of Eq. (6) without allowing
for the effect of the error of computing the vector X to the
first approximation is equal to the sum of the errors in integra4
tion in the step. At the limit, as h - 0, we have

6( (t) = -- .6p. +, (t) d, (36 )

to

where 6 n+lCt is the "local" expression for the error at the step.

By insetting into (36) expression (21) for 6 n+l and by /75

carrying out integration by parts, let us find the estimate of
the accumulated error of algorithm (20).:
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6T (t) h= h2 F (o) @ - F (X) (t) - 4 F (X) codt

By performing the same operations for the error (31), we get an
estimate of the accumulated error of algorithm (30):

8(p (t) h2 F(Xo)o-FP(X)0+ (X)(dt]. (38)

If in computing the quantity l/Y 2 , the operation of division
is undesirable, we can use recursion formulas of the type

(2 (- Y2;+] (39)

In conclusion, we note that if the solution to Eqs. (7) is not
used in setting up the matrix of direction cosines, then computation
of the quantities X1 and X2 can be omitted. But if the unknown
angles p, e, and y characterize the orientation of the SC relative
to some slow-varying coordinate trihedron (for example, the
accompanying trihedron of the orbital system of coordinates), then
to the right sides of Eqs. (2) are added small terms that must be
taken into account by periodic correction of the solution.
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AN ALQORITHM FOR COMPUTINQ THE TRAJECTORY
OF THE INJECTION OF A SPACE OBJECT INTO ORBIT

A.A. Krasovskiy and L.T. Gripp

The solution of problems .associated with the motion of a
space object over the section of its injection into orbit is
impossible without complex and cumbersome computations and
requires.considerable outlays of labor even when a high-speed
computer is used. Statistical methods of analysis of the type
of Monte-Carlo method and the random search method are widely
used. These methods in several cases can markedly improve the
flight characteristics of space objects, however to find the
optimal solution requires increasing the speed of calculations
by one order of magnitude.

Stringent requirements on ensuring <high speed of calculations
are also imposed by problems of the encounter of space objects
in orbit, developing systems of flexible control of space object
motion, and many others. Therefore it is very typical of modern
methods of analyzing space object motion that a great deal of
attention is given to developing universal calculation algorithms
that require minimum outlays of labor and machine time.

Improvements in computational methods of calculating space
object motion are following two main trends: development of
analytic methods for the most general assumptions possible, on
the basis of which a mathematical model of the flight is con-
structed, and the development of universal numerical methods
requiring the smallest possible outlays of labor to arrive at a
solution with specified precision.

The most successful solution would be developing an algorithm
which would approach in universality numerical methods, and in
speed -- analytic methods. An attempt to solve this problem is
given in the present article.

Let us examine an algorithm for computing the trajectory of /76
a space object over the section of its injection into orbit for
assigned designed characteristics of the object and launch Vehicle
and for selected control programs.

The mathematical basis of the proposed algorithm is the
use of interpolational power polynomials for numerical integration
following the scheme of successive approximations.

As a numerical illustration of the results obtained in the
article, we used data on hypothetical launch vehicles and space
objects published in the periodical literature.
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Integration of 'systems of ordinay dif:ferential equations by
the scheme of succes:sive approximatonss. The analysis of procedures
of numerical integration based on the Picard method of successive
approximations is closely associated with the names A.N. Krylov
[1] and V.E. Milne [2]. Below is presented a numerical method of
successive approximations based on the concepts of these authors
and on the interpolational quadrature formula.

Let us first examine expressions for the coefficients of
the interpolational power polynomial.

We know [31 that for any assigned function 4(t) there exists
a unique polynomial of degree m

Qm() = k (1)
k=O

which at (m + 1) arbitrarily placed interpolation nodes t- (j = 0,
1, ...; where tj $ tk for j p k) takes on the assigned vaLues

QM (ti) = V (t).

The traditional method of determining the coefficients of
the polynomial is solving the system of (m + 1) linear algebraic
equations

k=o (2)

where j = 4(tj). Here and in the following it will be assumed
that the indexes k and j run through the values 0, 1, ... , m.

Using mathematical induction, we can show that the coefficients
of the interpolational polynomial can be obtained directly from
the expression

-=o (3)
i--i

where

Aik Bi
k

V Bik
k=0O

Bik= iBikfl t1 m
B/k =a- tiBi,k+ 1;  Bim = i.

i=0
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In the case that is convenient for practical purposes, when
the interpolation nodes are equidistant points, the coefficients
Ajk are found from the simpler expression:

Ai m IAik+1
Aik = jA!, - m A. (4)

j=O

where

Aim (m -)

Then the interpolational polynomial (1) takes. on the form: /77

m

Qm (t) = k ( T),

where

Tm

tH and t' are the bounds of the finite limit of change of the
independent variable.

Data on machine time outlays (Fig. 1) show that when m > 3,
the recursion expression (4) for determining the coefficients of
the interpolationalr)polynomial reduce the time of computation
compared with the case when the system of algebraic equations (2)
is solved by ordinary methods, for example, the gaussian method.

The advantages of the proposed method of determining the
coefficients of the interpolational polynomial also include the
explicit analytic representation of the coefficients and the
reduction in the required size of the operational memory of
the digital computer.

Let us use the interpolational polynomial of the form (5)
to construct a quadrature formula to find the integral with
variable upper limits

x (t) = (t) d,
tH

where tH < t I t'.

By replacing the integrand with the interpolational polynomial
C5) and neglecting the residual term, let us construct the rule
for approximate quadrature:

x(t) h - k +1 (6)
k=O
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,,xce, a The resulting formula is
__ .easily applied to the computa-

___ _,_ tion of multiple integrals.
6o -' Thus, an integral of the form

-- -- t- -tH tH

can be computed according to
the following approximate
formula:

___ _( (k + X)I 7
.k_+li I I k=O (7)

100 tO m

Fig. 1. Machine time required When the resulting quadrature
for computing the coefficients formula is used in practical
of the interpolational polynomial computation of the requirements,
as a function of its order: the precision of integration

--- recursion formula can be ensured by varying the
--- gaussian method order of this formula m and

the length of the interval of
Key: a. Isec change of the independent

variable At = t' - tH.

Let us proceed to the problem of integrating ordinary differen-
tial equations based on the interpolationadI°.quadrature formula of
the form (7).

Under the Picard theorem [4], for a first-order differential /78
equation

x = f (t, x), x (t) = x., (8)

whose right sides satisfy the conditions of the theorem of existence
and uniqueness, there is a recursion formula for finding the solu-
tion of this equation in the form of these successive approximations:

t

xv = x, + f (t, x,,) dt.

Here, it is customary to take the initial condition xH as the
initial approximation x0 .

Using formula (6) to find the quadratures xv in the interval
[tH, tt', we can represent the approximate solution of differential
equation C8) as the power polynomial:
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x xR + h k l (9)
k-O

whose coefficients wkr are determined by the recursion relations:

m
okv = Aikfi, ,

i=0

fiv = f (ti, Xv), (10)

xiv = x+ h kv 1 k+ v l, 2, ..., r.
k=0

The numbers xj . are values of the v-th approximation of the
unknown function at the interpolation nodes.

Computations based on formulas (10) were made up to the value
v = r, for which the relation IXr - Xr-ll < s is satisfied, where E
is some assigned small number characterizing the required cal-
culation precision.

This method is generalized to a system of ordinary differential
equations of any order that is solvable relative to the major

derivatives x.fx= f,(t, ..., x,, x, ... , x, ... , x-, ... x ,

i = 1, 2, ... , n

The approximate solution in this case is analogous to (9):

m ki Otk

xi xi+h x x (k + X)(11)
k=0

The iterative process (10) for the system of equations is
conveniently represented in matrical form

Ix,]= [x,] + hx [fv- [E , v= 1, 2, ... r (12)

where [EI ]= [Am, [D)];. I[x,, [fv-1l] are the rectangular matrices of the

type n x m, whose elements XijH and Pij,'-I are defined as follows:

(jh)X-1(x-)
XiiH = Xi + jhx;H + .... +

fij,v-1 = fl (ti xlj, -..... xni, v-I Xi,v-' l . ..

SX119-I)
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[Am], [DmX) are square matrices pf order m; the elements o the /79

matrix [Am ] are found from expression C4); and the elements of

the matrix [DX) are calculated by the formula D ( f k

Iteration C12),''is continued until the required integration
precision is not attained, after which the coefficients wikr are
determined:

[o,l = [f,.] [A,.(13)
(13)

The process of determining the coefficients Wikr can be
accelerated to a large extent if one takes as the initial approxi-
mations not the initial values of the unknown functions, but some
functions x*(t) that are closer to the exact solution. The closer
these functions are taken to the true solution, the more rapidly
will the limiting functions xi(t) be attained, with the degree of
precision selected for the computations. In this case, the solu'
tion of the system of differential equations and the coefficients
of the polynomial are also determined by formulas (11) and (12),
where instead of the matrix [iH] we must take the matrix [x*],
whose elements are x* = x*(t

ij ,, d

Integration of equations of motion of the space object. Let us
consider the application of the numerical method of successive
approximations to integrating the system of differential equations
of motion of a space object over the section of its injection into
orbit.

The equations of motion of the space object in general form
can be represented thusly (in projections onto the axeso'f';the
Cartesian system of coordinates with the origin at the launch
point):

V1 = fi (t, M, x, y, z, Vx, Vy, V),

r,= V,, i = x, Y, z (14)
M = g (t),

where t is the flight time; V is the yelocity of the space object;
r is the radius-vector Crx = x, r. = : + y, rz = z; RO is the
radius of the Earth at the launch point).; and M is the mass of
the launch vehicle bearing the space object.
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The algorithm for integrating the equations of motion
presented below does not depend on the form of the right sides
of the differential equations, therefore the functions fi are
not expanded here. It is only required that these functions
satisfy the conditions of the theorem of the existence of unique-
ness. The explicit form of the right sides of differential
equations C14) is defined by the specific problem and is presented
in numerous sources, for example, in [53.

Under the above-presented integration algorithm, the solution
offsystem C14) is best sought by beginning from some initial
approximation. In this case, the assignment of the initial
approximation reduces the defining the so-called "reference" tra-
jectory for which we take the trajectory of motion of the s.pace
object in a vacuum with a constant gravity field. The laws of
variation of mass and the pitch angle for the "reference" trajec-
tory are approximated by linear functions. With these assumptions,
the differential equations of motion are easily solved in quad-
ratures. The final expressions for computing the "reference"
trajectory are not given in, this article, since their derivation
does not pose fundamental difficulties.

This approach permits, with minimum machine time, computing
the values of the kinematic elements of the trajectory, allowing
an error of 10-15%, which is wholly acceptable for the initial
approximation.

The next problem is to integrate the equations of motion on
the basis of the "reference" trajectory adopted.

Suppose that at some time- ;instant tH the motion of the /80
launch vehicle carrying the space object is characterized by
the vectors of velocity VH and position rH and by mass MH. It
is required to determine to the desired precision the velocity,
position, and mass at the time interval [tH, t'] satisfying
the system of differential equations .(14).

Let us represent the right sides of the differential equations
of motion in the form of a sum of two components, one of which
characterizes the motion of the space object along the "reference"
trajectory, and the other is a correction corresponding to the
difference of the actual and "reference" trajectory; let us
integrate them in the limits form tH to t, and we get

V,=Vi+AV,, r1=rI+ Ar, M= M*+AM.

The initial conditions here are taken into account in the
integrals- of the "reference" trajectory Vf, r*, and V,*.
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Using the above-presented method, we can define the elements
of the trajectory in the time interval [tH, .t'1 by the following
functions:

V, = V, + h ( 1ik, +,,I
k+1

k=O

S= r + h2 Oikr k+2
+h (k -- 1) (k + 2) 2(15)

k=O

To compute the coefficients of the polynomials, we use the
expressions

(ik,= ' AjkAlq,,
j 0

m (16)
w = AikAA1i .

i=0

The mass consumption per second M depends only on the flight
time; therefore the coefficients wk are defined by expression (16),
if the corrections AMj to the "reference" value of the per-second
consumption M*, taken at the interpolation nodes, were computed:

AM; = M~ (ti) - M.

The corrections to the acceleration components AVijr are
functions of the kinematic trajectory elements and therefore cannot
be found directly. The recursion relations

[VI = [V*] + h [AV_,] [E ],
[rJ = [r*] + h2 [AV_,I [Ef)], (17)
[Aiv_,l = [l,_, - [V*l,

are used to compute these corrections, where [V] and [r] are
rectangular matrices of the type 3 x m, with the following form
Cthe indexes * and v in the notation are omitted for simplicity:

I xo Vx ... Vxm
IV]= Vo V, ... Vm ,,

Vlo VTz ... VzmJ

xo xF ... xm
[r]= R + yo Ro 9+ y, Ro+m .•

Z, Z ... Zm
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The matrix elements[V V-1 are computed by Eqs. (14).for the /81

values of the kinematic elements [V I] and [r ,_land the cor-

responding values of flight time and mass. The iterative process
described by expression (17) is continued up to an v = r such
that the condition ~Imaxl a E iS .satisfied where e is the allowable
error of the computation of acceleration; I(max( is the modulus
of the largest of the matrix elements .5 characterizing the
change in the acceleration components at the interpolation nodes

in a single approximation

Thus, integration of the system of equations of motion
according to the proposed algorithm provides for carrying out the
following operations: computing the "reference" (simplified)
trajectory from analytic expressions; determining the coefficients
of polynomials by successive approximations in accordance with
the recursion relations (17); and setting up the time functions of
the trajectory parameters according to formulas (15).

Realization of the proposed algorithm of trajectory computation.
The main criterion characterizing the suitability of a particular
calculation method is providing minimum machine time for the assigned
precision of trajectory element computation.

When this algorithm is used, the computation time and the
integration precision are determined by three parameters, which
depend on the nature of the behavior of the right sides of the
differential equations: the order of the:interpolation quadrature
formula m, the number of successive approximations r, and the
integration interval At.

Below are presented several general considerations dealing
with the assignment of these parameters when computing, on a M-220
high-speed digital computer, the trajectory of the insertion of a
space object into orbit.

It is obvious that the methodological error in integration
decreases with increase in the order of the quadrature formula m.
In addition, for large m errors caused by the inevitable rounding
in computing the right sides of the differeptial equations and
the elements of the integration matrices [E )] and [E(2 )] begin

m m
to have an effect. For this class of trajectories, the seventh-
order quadrature formula is preferable. When m = 7, the elements
of the integration matrices are of an order not exceeding the
computer capacity and, therefore, the rounding errors in computing
the elements are absent, while the errors in rounding the right
sides are negligibly small.
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The number of approximations required for the assigned cal-
culation precision depends to a large extent on the specific
problem. In order to avoid possible errors, the selection of the
required number of approximations is introduced into the integra-
tion algorithm. In this case, the process of successive approxima-
tions continues until two neighboring approximations of the
trajectory elements are coincident in the limits of the assigned
precision. Figure 2 presents the maximum errors of computation
as a function of the number of successive approximations for a
hypothetical medium-class AES [artificial Earth satellite]. From
an examination of these data it follows that in practice three
approximations are sufficient for the atmospheric section and two
approximations for the extra-atmospheric section; the computation
errors here do not exceed 0.001 m/sec in velocity and 0.1 m in
position.

With these conditions for selection of the parameters m and r,
the required calculation precision is uniquely ensured by the
selection of a single parameter -- the integration interval At.
The parameter At is a quantity that is analogous to the integration
step in other numerical methods.

The functions given in Fig. 3 show that for a computation error
of not more than 0.01 m/sec in v4locity and 1 m in position, the
step At is approximately 20 sec when computing the atmospheric
section, and 250 sec when computing motion in the vacuum.

Under the same conditions, the time for computing the
trajectory by the numerical method of successive approximations
is reduced compared with the time of computation under the Runge- /82
Kutta method by approximately a factor of two for the atmospheric
section, and by a factor of 20 for the extra-atmospheric section.

The computation time was reduced owing to two factors. First
of all, the actual trajectory of the object was computed relative
to the "reference" trajectory which considerably reduced the size
of the right sides and, therefore, made it possible to increase the
integration step. The time outlays for computing the "reference"
trajectory, expressed in simple analytic form, are negligibly
small compared with the total computation time. Secondly, the
interpolational quadrature formula on the basis of which the
integration process was constructed has a residual term that
is much smaller than the residual term in the Taylor series
taken as the basis of the Runge-Kutta method.

Let us point out several features of the realization of the
proposed algorithm.
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a

The use in this algorithm
._ _-_ _of a quadrature formula for

finding integrals with a vari-
__ -- able upper limit makes it

possible to arrive at the
-____ _ _ approximate solution both in

numerical and analytic form.
Therefore each trajectory
parameter must be represented
by an analytic expression of
two terms. The first term
is the expression for the

,Vtl -i__ \_ parameter of the "reference"
trajectory, and the second
is a polynomial of m degree,
approximating the difference
in the parameters of the true

0 2 and "reference" trajectories.
Thus, as the result of compu-

Fig. 2. Errors in computing tation, the kinematic parameters
velocity AV and altitude Ah of the object trajectory can be
as a function of the number obtained in compact form. To
of successive approximations: do this, it is sufficient to
-- motion in the atmosphere specify the formula for each
--- motion in vacuum trajectory element and the

table of the parameters of
Key: a. m/sec the "reference" trajectory and

the polynomial coefficients.

An important feature of the proposed method is the option of
simple monitoring of the correctness of the solution on a digital
computer. A double solution of the problem followed by a com-
parison of the results or of control sums is a fairly widespread
procedure of monitoring. This procedure involves large outlays
of machine time, howeverit is necessary when solving problems of
large scope. When the method of successive approximations is used,
the necessity of double computation disappears, since the computa-
tion is conducted until two successive approximations coincide
within the limits of the assigned precision, as a result of which
random digital computer misses can be corrected by the following
approximations.

Upon examining this algorithm overall, we can note its
following advantages:

-- the method of successive approximations markedly shortens
the time needed to compute the injection trajectory;
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a

-- the method of successive
_ z _ approximations is conveni-

ent for ongoing monitoring
i ~ h!t of the correctness of the

Ssolution when computing
the trajectory on a digital

1- computer and makes it
possible to avoid double

-/i ' computation; and

S -- the results of computing
the trajectory by the method
of successive approxima-

S _ tions can be represented
as compact analytic

f Ib expressions and as a
S 0 oo 0 2o. dtce table of coefficients.

Fig. 3. Errors in computing
velocity AV and altitude Ah The proposed algorithm also
as a function of the integra- proves very effective when used
tion interval: for other problems of space
-- motion in the atmosphere ballistics, for example, for the
--- motion in a vacuum problem of determining the

optimum regime of the injection
Key: a. /sec b. sec of a space object into orbit,

however this.problem is beyond
the scope of this article and
is a subject for special con-
sideration.
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ANALYTIC-NUMERICAL METHOD OF COMPUTING
ATTITUDE CHANGES OF SIMILAR AES

A.A. Krasovskiy, Ye.I. Bushuyev, E.P. Kompaniyets,
and A.I. Vasil'yeva

The proposed analytic-numerical method of computing attitude
changes of similar AES, with allowance for the noncentrality of
the Earth's gravity field and the atmospheric density, when per-
formed with a computer affords a considerable saving in machine
time (by a factor of 10-15), with satisfactory precision, which
is important when solving problems associated with the long-
term prediction of AES attitude changes.

The basis of the method is the familiar procedure [31 of
two-cycle integration of the differential equations of motion in
osculating elements: integration in the limits of a single revo-
lution (internal cycle) and integration by the number of revolutions
(external cycle).

To ensure speed in computations, integration in the internal
cycle is replaced by computation using finite formulas with
reference to short-periodic fluctuations in flight altitude owing
to the noncentrality of the Earth's gravity field and the non-
sphericity of the Earth and the dynamic model of atmospheric
density that reflects variations in the density of a global nature
(11-year cycle, 27-day and semiannual variations, and geomagnetic
effects).

These increments in the elements of orbital motion in a
revolution are the starting basis for integrating the equations
of AES motion in finite differences -- by the number of revolutions.
External integration is carried out by one of the methods proposed
in [4]. At each step of the external integration, the elements
of orbital motion are refined by the value of the long-periodic
fluctuations due to the noncentrality of the Earth's gravity field. /84

Short-periodic fluctuations in the flight altitude of an AES
in a revolution. For the motion of AES in elliptical and circular
orbits, the mechanism of the perturbing action of the atmospheric
density differs: in near-circular orbits the satellite is decelerated
at virtually all points, but in elliptical orbits -- in the region
of the orbital perigee, accordingly, for near-circular orbits with
eccentricity e < 0.02, allowing for the short-periodic fluctuations
in altitude was made over the entire revolution, and for elliptical
Ce > 0.02) -- only at the perigee.
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In deriving the formulas, allowance was made for the perturbing
action only of the second zonal harmonic of the expansion of the
Earth gravity potential. In several studies, for example 151,
it is shown that higher harmonics lead to negligible short-periodic
fluctuations. The perturbing action of the atmospheric density
on the flight altitude within the limits of a single revolution
was not taken into account.

Near-circular orbits Ce < 0.02). Let us write the instan-
taneous flight altitude in near-circular orbits in the form

h = r - Re + Ahper  (1)

where r is the radius-vector of the satellite when moving in an
unperturbed Keplerian orbit; Re is the equatorial radius of the
Earth; and Ahper are the periodic fluctuations in AES flight

altitude in a revolution, caused by the noncentrality of the
field and the nonsphericity of the Earth.

Periodic fluctuations of the radius-vector owing to the field
noncentrality Arper are defined by the familiar formula [2]:

r (2)
Arpe r = -p 2- sini (1 -cosu) _+ sinisinu , (2)

where e and V are constants of the attracting field.

With reference to the instantaneous value of the Earth'srradius
at the satellite track point:

R,= Re( a sin 2 i sin 2 u), (3)

where a is the polar contraction of the Earth, we get from (2)
and (3):

Ahpe r = Bsinu -- C(1--cosu). ,  (4)

Here

B = (pea 1 sin 2i;3 p (5)
C= 1 1 2 )

P - - -3 (6)

Formula C) gives good agreement with an exact .computation (
Cabout 2%1 for e < 0..02; for larger eccentricities, the error in
altitude determination becomes comparable with the value of the
correction itself.
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Elliptical orbits (e > 0.02). The altitude at the perigee
for a flight in an elliptiEal orbit is determined by the formula:

S= Ca + aper) C. - e -eper) - R (7)

where R ReCI - asin2 iin2 w) ; Aaper and Aeper are the periodic

oscillations of the semimajor axis and the eccentricity due to the
noncentrality of the Earth gravity field.

Let us represent the rate of change of the parameters a and 1
in the form

de =- 2 Ssin(u-) + e+2cos(u-)+ecos2(u-)

IA e cos (u - (0) I+ (8)
da 2arr2

da 2 { (Sesin(u - o) + T [fe cos(u- ()], (9)

Y= r2  
sin u 1; (10) /85

1 -- ctg i W
I 1 + e cos (u - o))

3 C 2ot 2S = - 2 (3 sin u sin2 i - 1); (11)

T = r sin isin 2u; (12)

3 C,,tR2W = o e sin u sin 2i.
2 r (13)

Using expressions (8) - (13), after transformations we get:

de 3 C,oR 2  5_

ju- = -2 1 kk Sin k (u - o) - 4 Cos k (u - mp,diu 2 a(1-e")" k= sink(u ))+ kcOsk(uw)J' 1

da C2 oR(

du-- [rlka(1- e2) sink (u - ) + k cos k (u - ), (15)

where

T,= se + e2 + t e ( 3 + e2) c ,,

Q2 2  2  c,
S= -se2+ e 1 e) c,

1 ±~ ~ 4(1 e2 )c i C(16)
3

14 = elc,

S= - e3c,;
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s=-e(++e2 )c2,

-= 2 e2 2,

(17)

& = - e2c,

5
6 =- ec2;

E I + (l + 3e) c,.

2 - se + - ec1,

3 = se2 + T 7+ ex, (18)

3
4 = ecl,

eb = - e2c1;

S= ) 4 e c, /86

5
2 .--- ec ,,

t3 =- - 7 + -L7e c2 (19)
3
5

Here

3 (20)
s = 1 sin 2 i ; = sin icos 2( ; c2 = sin2 i sin2. (20

Integrating expressions (14) and (15), and considering that for
the perigee u = w, we get the final expressions for determining
the periodic fluctuations of parameters a and 1:

Aanep = -2 a(1 _e) a  [-Ik( - cosko) + E sin ko], (21)
k=1

Aenep - a2 ( e2) [- k(1 - cos k) + 4ksin ko]. (22)
k131
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The methodological error in determining h based on formulas
C(7), 21), and (22) is not more than 5%.

Long-periodic fluctuations in orbital elements. We will
consider long-periodic fluctuations of elements of orbits whose
attitude changes determine the lifetime of the satellite, i.e.,
the semimajor axis and the eccentricity.

Long-periodic fluctuations have been analyzed in several
studies. In particular, Kozan and Brauer derived analytic
expressions for orbital perturbations caused by the influence
of zonal harmonics up to 14, inclusively. Kaul has developed
an analytic theory of tesseral harmonics. A compilation of the
formulas derived by these authors and a description of a program
for the differential refinement of orbits DOI used in the United
States are given in [5]. In the study [6], convenient formulas
for long-periodic perturbations owing to the second harmonic
were obtained on the basis of the problem of two fixed centers.
A similar analysis of long-periodic perturbations for the case
of near-circular orbits with reference to six harmonics is given
in [7], and with reference to tesseral and sectorial harmonics
-- in [8].

With reference to the stringent requirements on the speed of
the computations, we limited ourselves to examining only the most
essential perturbations caused by the effect of two, three, and
four ,zonal harmonics, which in general cases is applicable for
near Earth satellites.

Long-periodic oscillations of the semimajor axis a and
eccentricity e in the proposed method are used in the form of
the corrections Aag and Alg as the integration step.

Near-circular orbits (e < 0.02). For near-circular orbits,
the following formulas were adopted [7], yielding the change
in the parameters a and e in a single revolution: /87

dq -A4 -(A -- 4:,, 1 i
__ I

A,-+(A2+A:')q q (23)

-- Aq ,

where

q e coso; k= e sin ; a= ;
Re (24)
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A 3 = (5s, - 4) (3 - 2s,) C20,
P4

A = (5s- 4) C2 + 3a (380sl - 445s) C2o +2 2 32 1

15+- - (16- 62s, + 49sf) C,o,
S) , , (6sC-27S C40, (25)

A 16 P 1 P4

A 4 = - - sin i (4 - 5s,) C30,

9 (5s - 4) C2o;

A6 = --P3

p=a(1--e 2 ); s, =sin2 i; (26)

N is the integration step by revolutions.

The eccentricity and the argument of the latitude of the
perigee of a perturbed orbit are computed in terms of q and k
using the formulas

e= V/q2+ k2; = arcsin- (27)e (27)

Elliptical orbits (e > 0.02). The following formulas [5' 6]
were adopted for elliptical orbits:

a) owing to the second zonal harmonic

e. (e2()1-) 1 ; 1 (28)

e, = /e+ e,(1 +ecos (+ecos)(-1)-sin 2 i(1 -e 2)(p-1l, (29)

where
e (cos cN - cos e) 1 2 (30)

11= 1 + 1+ecoso e p 3 p

a.and e, and aB and eB are the unperturbed and perturbed values
of the orbital parameters, respectively; w,and wN are the
argument of the latitude of the orbital perigee at the initial
point and at the areridpoint of the integration step, respectively;

b)1 Qol:ng"to ;.the third zonal harmonic

- be, --i -sinisinC. (31
- 2 C20a (31)
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The methodological error in :formulas C23), and C27) - (29.)
does not exceed approximately 5%.

.Equations of motion. The expressions obtained above for
the representation of the flight altitude of AES in a revolution:,
and for the long-periodic oscillations in orbital elements, as
well as the results of the work [1] make it possible to represent
the changes in the orbital elements in a single revolution in /88
the form:

AQ = AQg + AQO; (Q = Q, o, i, a, e, x, (),(32)

where AQg and AQp are the perturbations of the orbital elements
owing to the noncentrality of the Earth gravity field and the
atmospheric drag, respectively.

For convenience in analysis, in addition to the orbital
eccentricity e, we bring into consideration the linear eccentricity
x = ae.

The Increments of individual elements owing to each perturbing
factor are defined by the formulas:

AQg = 2 cos i; Aq = 0,P' (33)

Aco, = (5 cos2 i - 1); Ao, = 0,)1

Aig = Aip 0,
da (35)d , e< 0,02,
-INAaga , e>0,02, 

(36)

AaP = - a2 (1 + e cos E)3 p

, (1 - e cos E)'I/ pd, (37)
0

2 + k e
q+ d + (k -e e< 0,02

___g_____N 
(38)

Ae =-e
eB+ - e -, e > 0,02,

At = 2" a ra,
Y_ (38a)

A 7e 1 -- s i -- e cos2o 1 - sin2

2 217J (39)

S (1-- e cos E)"'Ax .a26 (1 - e cos E)'1' (cos E + e) pdE,(1 - e cosE) (40)
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where

6= FS.CX (41)m

F= -- cos ; (42)

Wa is the angular rate of rotation of the atmosphere.

The quantities a, eB, Ae, dq dk da
dN - d- are defined by formulas

(23) and (29) - (31).

Equations:~(37) and (40). are the principal ones, defining the
secular changes in orbit under the effect of atmospheric decelera-
tion. An analysis of these equations for different types of
orbits, with allowance for the effects of atmospheric compression
and altitude scale variability, is given in [1]. However, one
of the main assumptions in this work is the neglect of short-
periodic oscillations in the instantaneous flight altitude owing
to the noncentrality of the Earth gravity field. The effect of
field noncentrality shows up most strongly for near-circular orbits;
for elliptical orbits, the results of D. King-Healey are wholly /89
suitable if the perigee altitude is used in the calculation, with
allowance for the short-periodic effects (4) and (7).

ae
Elliptical orbits -- v = - > 3 (e , 0,02) . The formulas from the

study [1] were taken for elliptical orbits; these formulas correspond
to the case of deceleration in a compressed atmosphere with a
variable altitude scale:

Aa= S, (Aa + Aga + Aza), (43)
Axp = S(Axx+ AX + A3 x), (44)

where

S, = 26a2psQ - ' exp [- (v1 + ccos 2 ()] exp (45)

3 +  3 (46)
Ala = Io + 2el+ -]O+2) e (3 e)2 (46)

Aa = -bx 2 [3I o -4 1 + 1. + e(- 41, + 711, -41 2 + 13) +

e2 (71o - 121, + 81, - 43 1,); (47)

Aza = c 2e 3  e 2 (31+21, - 171 4) cos 2o

+ 4c (10 + 2eIl + [I4 - e(1 3 - 31) cos 4o}; (48)
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Ax +I e (3 o10 + l)+ ±e2(hI ff3)+-L 0 (71812 I (49)

A2x = bx2 4 7 1--41 + 1)+ - e (191o - 28h1 + 121 -41 3 +

+ I) + e2(- 44Io + 7811 - 4812 +171 - 4/ + 5) (50)

A3x = - cI + 13 L e (I - 6, - 314)- T e2 (161 - 291 -

S11Is) cos 2w+ + c2 2 + e (310 + 12) + 1 + I5- e (31, - 614

- 51,) cos 4a (51)

c = -aH'rnsin2 i; (52)

H dhn P vi aeH-'; b a , (53)
2Hn

I + PaXs

SVs exp - s); (54)1 + ---

dH,
RP~o dh, is the rate of change of the altitude scale;

is the atmospheric density at the altitude

hx = h. + XH.; (55)

Ii = li( 1) are the Bessel functions of the imaginary argument;
and s the relative error in specifying the scale of altitudes H.

The coefficients Q, and A were selected so as to minimize the
errors in Aa and Axp owing to imprecise knowledge of the altitude
scale characterized by the relative error s. For the interval /90

0.8 < s <1.25 (56)

the optimal values of Q and A are determined by the formulas

, = 0.5 0.33x,, (57)
Q = 0.596 - 0.25. (58)

Near-circular orbits, v = ae < 3 (e <0,02).

For near-circular orbits, the change .of parameters a and x in
a revolution is represented as the sum of the principal term that
allows for deceleration in a spherically symmetric atmosphere with
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a variable altitude scale, and a small: correction that allows for
the noncentrality of the Earth gravity field and the nonsphericity
of the Earth:

Aa, = S2 2 a + , (59)
Ax, = SAx + Ax, (60)

where

S2 = 2n6a'pxQ- 1 exp (- v1) exp x

Aa . (61)

On analogy with the
n.4 case of elliptical orbits,
.0 the parameters Q and A are

introduced to compensate forIF possible errors in the
assignment of the altitude
scale. Their optimal values
are shown in the figure for
the range of relative error
(56).

2 Based on formulas (37)
and (40), the expressions
for the corrections Aka and

Optimal values of the coefficients Akx can be represented as:
Q and A for the range of relative
error 0.8 < S < 1.25 as a function
of v.

2a 2 (62)
Aa = a26 (1 e cos E)" 2 pdE - (1 - e cos E)'- pdE( - e cos E) (1 - e cosE)l' pdE

0

-- (  - (cosE ) (63)
2a (63)(1 e cos E)V

(cos E )pdEj(1 - ecos E)d

where
P pnexp ( r )--g o ' (64)

P pexp(P); (65)
hper, (65)Ahp er,

(66)
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Expanding in a power series and considering only the linear
and quadratic terms in , we can represent expressions (62) and (63)
as:

( a2 ecos E 1  -dE (67)
A a = a 2. (1 - e e cos E )' (6 )

0

AkX- a6 +ec (cos E e) + dE.
-(1-e cos E)'1 ' (osE+)(s+ -2J)dE. (68)

Converting, in formulas (67) and (6.8), to a new independent /91
variable -- the true anomaly rn -- after integration and subsequent
transformations, we get to a precision of about 2%:

Aka = na 2 p, (1 + e) exp (- V) (69)

Akx = na 6pn exp (-V 2) [2e (1- e)f], (70)

where ae I -e
V= --- +e '; (71)

op = I, (B - 2C) [ 211C cos o - BI. cos 20o - o (B - 2C)2 +

+ (B 4C)+B2 I 4 cos 4 - I1cos 2w + 4C[C( I1cos 2 -

- 11 cos w) - -B (I + 13) cos cos 2  - 12 cos 2m - I cos m;

S= C o cos a I B (1 - cos ) - 2C - CI, cos A -- Ios osa - (72)

S{2[ B 2 + C (3C - 2B)] + [C2 - B (B - 2C)] (I, + ) cos 2W +
4H- 1 -41

+ 2C (B - 2C) (1o + I.) cos -+ B2 (I, I,) cos 40 - BC (Io + 21, +

+ ( I)c.oscos2 s;

, (v2); (74)

See C5.) and C6Y for B .arfd C.

We mus-t note that since the origin of reference of the short-
periodic fluctuations in flight altitude (4) corresponds to the
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instant the ascension node is traversed, to compute the increments
Aka and Akx by, formulas C69) and ( w70), we must use as the starting
data the orbital elements for this same instant of time. In
particular, the perigee altitude is computed by the formulas

hp=a(1-e)-R e
(75)
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